Автор работы: Пользователь скрыл имя, 03 Февраля 2013 в 01:55, доклад
Дисперсия - (от лат. dispersio - рассеяние), в математической статистике наиболее употребительная мера рассеивания, отклонения случайных значений от среднего.
Выборка (выборочная совокупность) - часть объектов из генеральной совокупности, отобранных для изучения, с целью получения информации о всей генеральной совокупности.
Критерий - правило, по которому гипотеза Н будет отвергнута, если случайная величина принимает значение из критического мн-ва S.
S критерием проверки гипотезы называется критерий заключающийся в нахождении критического подмн-ва выборки, не котором гипотеза не верна.
Уровнем значимости называется вероятность ошибки первого рода.
Функцией мощности S критерия называется функция то есть вероятность отвергнуть гипотезу Н0 при истинном значении параметра q.
Оптимальным, или наиболее мощным называется критерий S для которого W(S,q0)=a, W(S,q1)=maxW(S,qk) при S принадлежащем множеству всех критериев с уровнем значимости a, где q0 q1 – значения параметров для двух рассматриваемых гипотез.
Проверка двух простых гипотез. Лемма Неймана-Пирсона. Критерий отношения правдоподобия как наиболее мощный критерий ГММЕ 541.
j критерием называется такой критерий, согласно которому гипотеза Н отвергается, если некоторая бинарная случайная величина от выборки, принимающая свои значения с вероятностями a и 1-a соотв., принимает нулевое значение .
Оптимальным, или наиболее мощным называется такой j критерий, что W(j, q0)=a, W(j,q1) максимален среди всех j - критериев с уровнем значимости a.
Теорема Неймана-Пирсона. Для любого a от нуля до единицы существуют такие числа с, большее нуля, и 0£e£1, что j критерий с функцией равной 1, если p(x,q1)>cp(x,q0), e, если они равны и 0, если p(x,q1)<cp(x,q0), определяет оптимальный критерий с уровнем значимости a.
Равномерно наиболее мощные критерии. Семейство распределений с монотонным отношением правдоподобия ГММЕ 571 580.
Равномерно наиболее мощным называется такой критерий, что для любых двух значений неизвестного параметра из множества их допустимых значений и не равных фиксированному a0 множество Х, определяемое соотношением
¦(x, a1)³c¦(x, a0) одно и тоже.
Критерий согласия. Критерий Колмогорова, критерий хи квадрат Пирсона СКТ 209 ГММЕ 368 453 488.
Критерием согласия называется критерий, позволяющий выяснить согласие между распределением выборки и эмпирическим распределением.
Критерием Колмогорова называется критерий, принимающий гипотезу о характере функции распределения для случайной выборки, если n1/2 Dn£ka, где ka - a квантиль предела распределения n1/2 Dn при n®¥, Dn =sup|Fn(x)-F(x)| по всем x, Fn(x) – эмпирическая функция распределения выборки, F(x) – непрерывная функция распределения генеральной совокупности.
Теорема. Если F(x) непрерывна, то распределение статистики Dn не зависит от F(x).
Критерием хи квадрат называется критерий, в котором за меру расхождения эмпирической функции распределения с гипотетической равна c2=Svi2/npi –n, где рi – вероятность нек-рого подмножества выборки, разбитой на прямую сумму непересекающихся подмножеств.
Критерий однородности различных выборок. Критерий Смирнова, критерий Стьюдента. Критерий независимости СКТ 211 ГММЕ 482.
Критерием Смирнова называется критерий, позволяющий проверять гипотезу о том, что две выборки х1…хn и у1…уm взяты из одного и того же распределения, основанный на том, что если их функции распределения F(x) и G(x) непрерывны и совпадают, то при n,m®¥, n/m®c 0<c<¥, случайная величина , где имеет тот же закон распределения, как и в критерии Колмогорова.
Критерием Стьюдента называется критерий, позволяющий проверять гипотезу о том, что две выборки х1…хn и у1…имеют одинаковую дисперсию, он основывается на рассмотрении отношения дисперсии двух эмпирических распределений. Если F=|D1/D2| принадлежит доверительному интервалу распределения Фишера, то гипотеза о равенстве дисперсии для двух выборок считается состоятельной.
Критерий однородности двух выборок c объемами n1, n2, разделенные на l групп с численностями m’i и m’’i соотв. I=1,…,l состоит в вычислении значения и сравнивания его с табличным значением хи квадрат для соотв. Уровня значимости.