Автор работы: Пользователь скрыл имя, 06 Октября 2011 в 16:41, контрольная работа
Определите:
1) средний недовес одной коробки конфет и его возможные пределы
(с вероятностью Р=0,954);
2) долю коробок с недовесом до 1 кг;
3) возможные пределы доли коробок с недовесом до 1 кг
(с вероятностью 0,683). Сделайте выводы.
Наименование специальности: Связи с общественностью
Студент:
Номер зачетной книжки (студенческого билета):
Учебная дисциплина: Статистика
Кафедра: Статисткии
Номер варианта контрольной работы: 2
Дата регистрации институтом: «__» ______________ 2011г.
Дата регистрации кафедрой: «__» _______________2011г.
Проверил: ______________________________
2011 г.
Задача 1
При
выборочном бесповторном собственно-случайном
отборе 5% коробок конфет со стандартным
весом 20 кг получены следующие данные
о недовесе.
Недовес 1 коробки, кг | 0,4-0,6 | 0,6-0,8 | 0,8-1,0 | 1,0-1,2 | 1,2-1,4 |
Число обследованных коробок | 10 | 18 | 36 | 26 | 10 |
Определите:
1) средний недовес одной коробки конфет и его возможные пределы
(с вероятностью Р=0,954);
2) долю коробок с недовесом до 1 кг;
3)
возможные пределы доли
(с вероятностью 0,683). Сделайте выводы.
Решение:
1) средний недовес одной коробки конфет и его возможные пределы
(с
вероятностью Р=0,954);
Недовес 1 коробки, кг | Число обследованных коробок f | Середина интервала х | хf | 2 | 2f | |
0,4-0,6 | 10 | 0,5 | 5 | -0,416 | 0,17306 | 1,73056 |
0,6-0,8 | 18 | 0,7 | 12,6 | -0,216 | 0,04666 | 0,83981 |
0,8-1,0 | 36 | 0,9 | 32,4 | -0,016 | 0,00026 | 0,00922 |
1,0-1,2 | 26 | 1,1 | 28,6 | 0,184 | 0,03386 | 0,88026 |
1,2-1,4 | 10 | 1,3 | 13 | 0,384 | 0,14746 | 1,47456 |
Итого: | 100 | - | 91,6 | - | - | 4,9344 |
=91,6/100=0,9 – средний недовес одной коробки
=4,9344/100=0,493
=2*
=0,193
Вычислим
пределы среднего недовеса одной
коробки для всей партии:
0,9-0,23 0,9+0,23
0,7
1,13
С вероятностью 0,954 (т.е. в 95,4 коробках из 100) можно утверждать, что средний недовес колеблется в пределах от 0,7 до 1,13 кг.
2)
долю коробок с недовесом до
1 кг;
3)
возможные пределы доли
(с
вероятностью 0,683). Сделайте выводы.
0,27
0,64-0,27 0,64+0,27
0,37 0,91
С вероятностью 0,683 (то есть в 68,3 коробках из 100) можно гарантировать, что доля недовеса до 1 кг будет находиться в пределах от 0,37 до 0,91 кг.
Ежегодные темпы прироста реализации товара «А» составили в % к предыдущему году:
1998 – 5,5;
1999 – 6,2;
2000 – 8,4;
2001 – 10,5;
2002 – 9,2
Исчислите за приведённые годы базисные темпы роста по отношению к 1997 г. и среднегодовой темп прироста за 1998 – 2002 гг.
Решение
Приведём
исходные данные в таблице
Год | Темп прироста цепной, % |
1997 | - |
1998 | 5,5 |
1999 | 6,2 |
2000 | 8,4 |
2001 | 10,5 |
2002 | 9,2 |
Воспользуемся
связью цепных и базисных темпов роста
Составим расчётную таблицу
Год | Темп прироста цепной, % | Темп роста цепной | Темп роста базисный | Темп прироста базисный, % |
1997 | - | - | 1,000 | - |
1998 | 5,5 | 1,055 | 1,055 | 5,5 |
1999 | 6,2 | 1,062 | 1,120 | 12,0 |
2000 | 8,4 | 1,084 | 1,215 | 21,5 |
2001 | 10,5 | 1,105 | 1,342 | 34,2 |
2002 | 9,2 | 1,092 | 1,466 | 46,6 |
При
этом среднегодовой темп роста за 1998 –
2002 гг. равен
,
или 108,0%
Тогда
среднегодовой темп роста за 1998 –
2002 гг. равен 108,0% - 100%=8,0%
Задача
3
Имеются
следующие выборочные данные о расходах
на платные услуги домохозяйств района:
Домохозяйство | Обследовано домохозяйств | Доля расходов на платные услуги, % |
Городское | 400 | 30 |
Сельское | 100 | 10 |
Определите для домохозяйств района:
Решение:
-
общую дисперсию по правилу сложения дисперсии;
Обследовано
домохозяйств
f |
Доля расходов на платные услуги х | ( ) | ( )2 | ( )2f |
400 | 30 | 4 | 16 | 6400 |
100 | 10 | -16 | 256 | 25600 |
500 | 32000 |
= =32000/500=26
=32000/500=64
Домохозяйство
f |
Доля расходов на платные услуги х | ( ) | ( )2 | ( )2f |
400 | 30 | 10 | 100 | 40000 |
100 | 10 | -10 | 100 | 10000 |
500 | 40 | 50000 |
=40/2=20
=50000/500=100
=100+64=164
-
эмпирическое корреляционное отношение.
=
=0,80
Чем значение корреляционного отношения ближе к единице, тем теснее, ближе к функциональной зависимости связь между признаками.
-
эмпирический коэффициент детерминации
=0,64
Это
означает, что на 64% вариация расходов
обусловлена тем, что услуги являются
платными и 36% бесплатными.
Задача
4
По
отделению банка имеются
|
Определите
1)
Средний размер вклада в
2)
Индексы среднего размера
Покажите взаимосвязь рассчитанных индексов.
Решение: