Автор работы: Пользователь скрыл имя, 14 Декабря 2011 в 00:43, реферат
SPSS - одна из старейших систем статистического анализа и управления данными, продукт фирмы SPSS Inc. (Statistical Products and Service Solution - Статистические продукты и сервисные решения), сегодня SPSS является одним из лидеров среди универсальных статистических пакетов.
Министерство Образования Российской Федерации
Российский Государственный
Гуманитарный Университет
Факультет информатики
Рефера
«Прикладная статистика»
на
тему: «Множественная
регрессия в пакетах
SPSS»
Выполнила: студентка 3 курса, ФИ, 1 группы
Проверил:
Синицын В.Ю.
Москва
2005
Введение
SPSS
- одна из старейших систем
статистического анализа и
Системные требования. Для работы базовой системы требуется процессор 386 (рекомендуется процессор 486/33Мгц), 4 Мб памяти (рекомендуется 8 Мб), Windows 3.1 или старше, 20 Мб пространства на диске.
Интерфейс. Пакет SPSS построен как традиционная база данных: накопление массива информации, его формализация и представление результатов статистической обработки массива в виде отчета. Но так как пакет предназначен для выполнения специализированной функции - обработки результатов опросов - он имеет структурное отличие от традиционных баз данных, выраженное в принципах формализации накопляемого массива исходной информации, принципах статистической обработки и представления результатов информации.
Но внешних отличий интерфейса от традиционных баз данных или электронных таблиц (MS Access, MS Excel и т.п.) нет, что значительно упрощает первое знакомство с пакетом и позволяет достаточно быстро начать процедуру ввода или импорта данных, кроме того, пакет включает справочник и глоссарий статистических терминов.
Множественный регрессионный анализ
Экономические явления, как правило, определяются большим числом одновременно и совокупно действующих факторов. В связи с этим часто возникает задача исследования зависимости одной зависимой переменной Y от нескольких объясняющих переменных Эта задача решается с помощью множественного регрессионного анализа.
Обозначим наблюдение переменной , а объясняющих переменных — Тогда модель множественной линейной регрессии можно представить в виде:
где а удовлетворяет приведенным выше предпосылкам.
Включение в регрессионную модель новых объясняющих переменных усложняет получаемые формулы и вычисления. Это приводит к целесообразности использования матричных обозначений. Матричное описание регрессии облегчает как теоретические концепции анализа, так и необходимые расчетные процедуры.
Введем обозначения: — матрица-столбец, или вектор, значений зависимой переменной размера :
— матрица значений объясняющих переменных, или матрица плана размера обращаем внимание на то, что в матрицу X дополнительно введен столбец, все элементы которого равны 1, т.е. условно полагается, что в модели свободный член умножается на фиктивную переменную хi0, принимающую значение 1 для всех
— матрица-столбец, или вектор, параметров размера — матрица-столбец, или вектор случайных ошибок {возмущений) размера п.
Тогда в матричной форме модель примет вид:
Оценкой этой модели
по выборке является уравнение где:
Для оценки вектора неизвестных параметров применим метод наименьших квадратов. Так как произведение транспонированной матрицы на саму матрицу
то условие минимизации остаточной суммы квадратов запишется в виде:
Учитывая, что при транспонировании произведения матриц получается произведение транспонированных матриц, взятых в обратном порядке, т.е. , получим после раскрытия скобок:
Произведение есть матрица размера
, т.е. величина скалярная, следовательно, оно не меняется при транспонировании: . Поэтому условие минимизации примет вид:
На основании необходимого условия экстремума функции нескольких переменных , представляющей, необходимо приравнять нулю частные производные по этим переменным или в матричной форме — вектор частных производных
Для вектора частных производных доказаны следующие формулы:
где и — вектор-столбцы, а — симметрическая матрица, в которой элементы, расположенные симметрично относительно главной диагонали, равны. Поэтому, полагая , а матрицу
(она является симметрической), найдем
откуда получаем систему нормальных уравнений в матричной форме для определения вектора :
Найдем матрицы, входящие в это уравнение. Матрица Х'Х представляет матрицу сумм первых степеней, квадратов и попарных произведений п наблюдений объясняющих переменных
Матрица есть вектор произведений п наблюдений объясняющих и зависимой переменных:
В частном случае из рассматриваемого матричного уравнения с учетом и для одной объясняющей переменной нетрудно получить уже рассматриваемую систему нормальных уравнений для несгруппированных данных. Действительно, в этом случае матричное уравнение принимает вид:
откуда
непосредственно следует
Для решения матричного уравнения относительно вектора оценок параметров необходимо ввести еще одну предпосылку б для множественного регрессионного анализа: матрица является неособенной, т.е. ее определитель не равен нулю. Следовательно, ранг матрицы равен ее порядку, т.е.
. Из матричной алгебры известно, что , значит, т.е. столбцы матрицы плана должны быть линейно независимыми.
Решением уравнения является вектор
где — матрица, обратная матрице коэффициентов системы), а — матрица-столбец, или вектор, ее свободных членов.
Зная вектор , выборочное уравнение множественной регрессии представим в виде
где — групповая (условная) средняя переменной при заданном векторе значений объясняющей переменной
На практике часто бывает необходимо сравнение влияния на зависимую переменную различных объясняющих переменных, когда последние выражаются разными единицами измерения. В этом случае используют стандартизованные коэффициенты регрессии и коэффициенты эластичности :
Стандартизованный
коэффициент регрессии
показывает,
на сколько величин
изменится в
среднем зависимая переменная
при увеличении
только
объясняющей
переменной на
, а коэффициент
эластичности
— на сколько
процентов (от средней)
изменится в среднем
при увеличении
только
на 1%.
Пример использования Линейной регрессии в SPSS
Линейный регрессионный анализ позволяет получить предсказание значений зависимой переменной на основе значений независимых переменных.
Линейный регрессионный анализ является достаточно сложной статистической процедурой. Поэтому здесь ограничимся рассмотрением случая одной зависимой и одной независимой переменной и будем использовать процедуру простой линейной регрессии.
Для расчета линейной модели регрессии необходимо использовать пункты меню
Statistics – Regression - Linear –
выбрать переменную и поместить ее в окно Dependent (зависимая переменная) – выбрать переменную и поместить ее в окно Independet(s) (независимые переменные).
Нажав кнопку Statistics… можно задать расчет ряда коэффициентов регрессии, нажав кнопку Plots… - вид выводимых графиков в процедуре линейной регрессии (см. рис. 2.20), можно задать сохранение результатов процедуры "Линейная регрессия" (кнопка Save…) и параметры процедуры регрессии (кнопка Options…)
При интерпретации результатов, полученных в окне вывода программы SPSS, необходимо учитывать, что некоторые выходные данные требуются только при построении сложных регрессионных моделей. Поэтому рассмотрим только основные элементы выходных данных. В сноске к таблице Model Summary дается информация, которая показывает, насколько хорошо можно представить значение зависимой переменной на основе независимой:
R – коэффициент корреляции между переменными;
R-square - квадрат коэффициента корреляции (показывает, какая часть изменчивости зависимой переменной может быть объяснена независимой переменной).
При интерпретации выходных данных необходимо учитывать значимость коэффициентов (столбец Sig. таблицы ANOVA): линейная регрессионная модель зависимости является надежной, если уровень значимости не превышает 0.05 (5%).
В таблице Coefficients (коэффициенты) приводятся рассчитанные коэффициенты регрессионной модели: регрессионный коэффициент (тангенс угла наклона прямой), а также постоянная прямой. Значение в первой строке столбца В таблицы (Constant) – постоянная, во второй (где приведено имя переменной) – коэффициент (тангенс угла наклона прямой). С помощью этих чисел можно записать уравнение прямой:
Зависимая переменная = Коэффициент * Независимая
переменная + Постоянная
Теперь, используя это уравнение, можно по заданному значению независимой переменной вычислять значения (предсказанные) зависимой переменной.
В
столбце Sig. таблицы Coefficients
представлен уровень значимости для каждого
регрессионного коэффициента. При 5%-ном
уровне значимости можно считать неравными
нулю только те коэффициенты, для которых
значение Sig. не превышает 0.05.
Литература:
http://spss.ru
http://www.5ballov.ru/
«Теория вероятности и математическая статистика»
«Компьютер и Интернет для социолога»