Автор работы: Пользователь скрыл имя, 17 Февраля 2013 в 23:55, реферат
Модой в статистике называется величины признака (варианта), которая чаще всего встречается в даннойсовокупности.
Медианой в статистике называется варианта, которая находится в середине вариационного ряда. Медиана делит ряд пополам. Обозначают медиану символом .
Определение моды и медианы в дискретном ряду, где значения признака заданы определенными числами, не представляет большой трудности.
В рассмотренном примере наиболее часто встречаются семьи, имеющие 4 члена семьи, т.е. =4 (семья имеющая 4 члена семьи).
Образовательное учреждение
Орловская Банковская школа (колледж)
Центрального банка Российской Федерации
Самостоятельная работа по теме « Структурные величины в статистике»
Студентки 104 группы
Орловцевой Виктории Игоревны
Преподаватель
Ханинева Н.И.
Орёл 2011
В статистических исследованиях в качестве вспомогательных описательных статистических характеристик распределения варьирующего признака широко применяются мода и медиана.
Мода и медиана.
В некоторых случаях в статистике для определения типичных характеристик,особенно для отдельных размеров признака, применяют моду и медиану.
Мода
Мода обычно применяется тогда, когда сложно исчислить средние размеры
признака. В статистике модой называется величина признака чаще всего
встречающегося в данной совокупности.
начальная граница модального признака, т.е. признака, обладающего наибольшей
численностью в данном распределении,
Медиана
Медианой называется вариант,
делящий численность
ряда, т.е. построенного в
порядке возрастания или
признака на две равные части. Для четного ряда следует принимать среднее
значение из двух вариантов, находящихся в середине ряда.
Модой в статистике называется
величины признака (варианта), которая
чаще всего встречается в
Медианой в статистике называется варианта,
которая находится в середине вариационного
ряда. Медиана делит ряд пополам. Обозначают
медиану символом .
Определение моды
и медианы в дискретном ряду, где значения
признака заданы определенными числами,
не представляет большой трудности.
В рассмотренном примере наиболее часто
встречаются семьи, имеющие 4 члена семьи,
т.е. =4 (семья имеющая 4 члена семьи).
Могут быть распределения, где все варианты
встречаются одинаково часто. В этом случае
моды нет. В других случаях не одна, а две
варианты могут иметь наибольшие частоты.
Тогда у признака будут две моды и распределение
будет бимодальным.
Чтобы найти медиану в дискретном ряду,
нужно сумму частот разделить пополам
и к полученному результату добавить ?
.
Такой номер семьи делит ряд пополам. Поскольку
частоты с дробным номером не бывают, то
медиана находиться посредине между 50-й
и 51-й частотами. Затем по накопленным
частотам (частостям) определяют величину
варианта (признака), обладающего таким
номером.
Однако если единиц (частот) в совокупности
достаточно много и различия между величинами
рядом стоящих членов ряда небольшие,
то можно считать медианой (с достаточной
степенью точности) один из центральных
вариантов с порядковым номером n/2. Так
обычно поступают, определяя медиану при
четном числе членов ряда.
Рассмотрим, как определяется мода и медиана
для интервального ряда.
Прежде закрывают открытые интервалы
(первый и последний) и определяют интервалы,
в которых находятся мода и медиана. Их
называют соответственно модальным и
медианным интервалом.
Модальный интервал –
интервал с наибольшей частотой. В приведенном ниже
примере, модальным является интервал
170-175 см.
Для расчета определенного значения модальной
величины признака, заключенного в этом
интервале, применяют формулу.
Смысл этой формулы
заключается в следующем: величину той
части модального интервала, которую нужно
добавить к его минимальной границе, определяют
в зависимости от величины частот предшествующего
и последующего интервалов.
Медианный интервал (содержащий частоту,
который делит ряд пополам) определяется
по накопленным частотам. Это будет интервал,
накопленная частота которой равна или
превышает половину суммы частот.
Отсюда медианным интервалом будет интервал
со значением роста от 170 до 175 см. До этого
интервала сумма накопленных частей составила
175. Следовательно, чтобы получить значение
медианы, необходимо прибавить 75 [или 76
единиц] (250,5-75).
При определении значения медианы предполагают,
что значение признака в границах этого
медианного интервала распределяется
равномерно.
Прибавив полученную величину к минимальной
границе интервала, получим искомую величину
медианы.
т.е. половина студентов
имеет рост меньше 172.9 см, а вторая половина
– больше.
Строго говоря, приведенная формула моды
пригодна только для рядов с равными интервалами.
Формула медианы применима для любого
интервального ряда.
Определим среднюю арифметическую для
второго примера.
Для первого примера имеем: средняя = 3,81;
мода = 4; медиана = 4 члена семьи.
Для второго примера: средняя = 172,85; мода
равна 173.3 и медиана = 172.9 см.
Соотношение этих трех величин указывает
направление и степень ассиметрии рядов
распределения. Более подробно эти вопросы
рассматриваются в дисциплине “Математическая
статистика”.
Таким образом мода и медиана является
важными дополнительными характеристиками
к средней изучаемой совокупности. Особенно
ценны эти показатели для характеристик
небольших по численности совокупностей.
При этом следует помнить, что мода и медиана
являются описательными статистическими
характеристиками, т.к. в них не погашаются
индивидуальные отклонения, они всегда
соответствуют определенной варианте.
В то же время можно
привести немало примеров, когда мода
или медиана являются более эффективной
характеристикой, чем средняя.
Например, при статистических методах
контроля качества продукции, при оценке
качества передачи информации, надежности
работы средств труда широкого применяются
мода и медиана. Так, таксофон, почтовый
ящик следует разместить не на середине
улицы, а в точке, которая делит численность
проживающих пополам. Используется медиана.
Показатель «вероятность безотказной
работы» оценивается модой.
Считается, что медиана по своему положению
более определена, чем мода.
Выше было сказано, что средняя, мода и
медиана совместно используются при анализе
ряда распределения по структуре (на симметрию).
Если , то данный ряд симметричный. Если
, то в ряду имеются группы с очень высокими
частотами и если таких групп нет. Если
совокупность неоднородна и т.д.
Для характеристики
структуры вариационного ряда кроме моды
и медианы в статистике исчисляются и
другие характеристики: квартили, децили,
процентили.