Нетрадиционные источники энергии

Автор работы: Пользователь скрыл имя, 15 Декабря 2011 в 00:02, реферат

Описание

Почему же именно сейчас, как никогда остро, встал вопрос: что ждет человечество - энергетический голод или энергетическое изобилие? Не сходят со страниц газет и журналов статьи об энергетическом кризисе. Из-за нефти возникают войны, расцветают и беднеют государства, сменяются правительства. К разряду газетных сенсаций стали относить сообщения о запуске новых установок или о новых изобретениях в области энергетики. Разрабатываются гигантские энергетические программы, осуществление которых потребует громадных усилий и огромных материальных затрат. Если в конце прошлого века самая распространенная сейчас энергия - энергетическая - играла, в общем, вспомогательную и незначительную в мировом балансе роль, то уже в 1930 году в мире было произведено около 300 миллиардов киловатт часов электроэнергии. Вполне реален прогноз, по которому в 2000 году будет произведено 30 тысяч миллиардов киловатт-часов! Гигантские цифры, небывалые темпы роста!

Содержание

1. Что такое энергия ?
2. Энергия солнца
3. Ветровая энергия
4. Энергия рек
5. Энергия Земли
6. Энергия океана
7. Атомная энергия
Заключение
Список литературы

Работа состоит из  1 файл

Нетрадиционные источники энергии.doc

— 206.00 Кб (Скачать документ)

  необходимым для производства электроэнергии, уверяли сторонники использования  тепловой  энергии  океана.  "Согласно  нашим оценкам, в  этих  поверхностных  водах имеются запасы энергии,  которые в 10 000 раз превышают общемировую потребность в ней"."Увы, - возражали скептики,  - Жорж Клод получил в заливе Матансас всего 22 киловатта электроэнергии.  Дало ли это  прибыль ?"  Не  дало,  так как,  чтобы получить эти 22 киловатта, Клоду пришлось затратить 80 киловатт на работу своих насосов. Сегодня профессор Скриппского института океанографии Джон Исаакс делает вычисления более аккуратно. По его оценкам,  современная технология  позволит  создавать энергоустановки,  использующие для производства электричества разницу температур в океане, которые производили бы его в два раза больше,  чем общемировое потребление на сегодняшний день. Это будет электроэнергия, производимая электростанцией, преобразующей термальную энергию океана (ОТЕС).Конечно, это - прогноз ободряющий, но даже если он оправдается, результаты не помогут разрешению мировых  энергетических проблем.  Разумеется, доступ к запасам электроэнергии ОТЕС предоставляет великолепные возможности,  но (по  крайней  мере пока) электричество  не  поднимает  в небо самолеты,  не будет  двигать легковые и грузовые автомобили и автобусы,  не поведет корабли через моря. Однако самолеты и легковые автомобили,  автобусы и грузовики могут приводиться в движение газом,  который можно извлекать из воды,  а уж воды-то в морях достаточно. Этот газ - водород, и он может использоваться в качестве горючего. Водород- один из наиболее распространенных элементов  во  Вселенной.  В океане он содержится в каждой капле воды.  Помните формулу воды? Формула HOH значит, что молекула воды состоит из двух атомов водорода и одного атома кислорода. Извлеченный из воды водород можно сжигать как топливо и использовать не  только  для

  того, чтобы  приводить в движение различные транспортные средства, но и для получения электроэнергии. Все большее число химиков и инженеров с энтузиазмом относится к "водородной энергетике" будущего,  так как полученный водород достаточно удобно хранить:  в виде сжатого газа в танкерах или в сжиженном виде в криогенных контейнерах при температуре 423  градуса по Фаренгейту (-203 С).  Его можно хранить и в твердом виде после соединения с  железо-титановым  сплавом или с  магнием  для образования металлических гидридов.  После этого их можно легко транспортировать и использовать  по  мере необходимости. Еще в 1847 году французский писатель Жюль Верн, опередивший свое время,  предвидел возникновение такой водородной экономики. В своей книге "Таинственный остров"  он  предсказывал  ,что в будущем люди научатся использо-вать воду в качестве источника для получения топлива. "Вода, - писал он, - представит  неиссякае-мые запасы тепла и света".Со времен Жюля Верна были открыты методы извлечения водорода из воды. Один из наиболее перспективных из них - электролиз воды.  (Через воду пропускается элект-рический ток,  в  результате чего происходит химический распад.  Освобождаются водород и кис-лород, а жидкость исчезает.) В 60-е  годы  специалистам  из НАСА удалось столь успешно  осуще-ствить процесс электролиза воды и столь эффективно  собирать высвобождающийся  водород,  что  получаемый таким образом водород использовался во время полетов по программе "Аполлон".

  Таким образом,  в  океане,  который составляет 71 процент поверхности планеты, потенциаль-но имеются различные виды энергии -  энергия волн и приливов;  энергия химических связей газов, питательных веществ,  солей и других  минералов;  скрытая энергия водорода, находящегося в молекулах воды; энергия течений, спокойно и нескончаемо движущихся в различных частях океана; удивительная по запасам энергия,  которую можно получать, используя разницу температур воды океана на  поверхности и в глубине, и их можно преобразовать в стандартные виды топлива.

  Такие количества энергии, многообразие ее форм гарантируют, что  в  будущем человечество не будет испытывать в ней недостатка. В то же время не возникает необходимости зависеть от

  одного - двух основных источников энергии,  какими,  например, являются давно использующиеся ископаемые виды топлива и  ядерного горючего,  методы получения которого были разработаны не-

  давно .Более того, в миллионах прибрежных деревень и селений, не имеющих сейчас доступа к энергосистемам,  будет тогда возможно улучшить жизненные условия людей. Жители тех мест,  где на море  бывает  сильное  волнение, смогут конструировать  и использовать установки для преобразования энергии волн. Живущие вблизи узких прибрежных заливов,  куда во время

  приливов  с ревом врывается вода, смогут использовать эту энергию. Для всех остальных людей энергия океана в открытом водном пространстве будет  преобразовываться  в  метан,  водород  или электричество, а затем передаваться на сушу по кабелю  или  на кораблях. И вся эта энергия таится в океане испокон веков.  Не  используя ее, мы тем самым попросту ее расточаем.

  Разумеется, трудно даже представить себе переход  от столь привычных, традиционных видов топлива - угля,  нефти и природного газа - к  незнакомым,  альтернативным  методам  получения

  энергии. Разница температур  ?  Водород,  металлические   гидриды, энергетические фермы в океане ?  Для многих это звучит как научная фантастика. И тем не менее несмотря на то что извлечение энергии океана находятся на стадии экспериментов и  процесс  ограничен  и дорогостоящ, факт остается фактом,  что по мере развития научно-технического прогресса энергия в будущем может в значительной степени добываться из моря.  Когда - зависит от того,  как

  скоро эти  процессы станут достаточно дешевыми. В конечном итоге дело  упирается не в возможность извлечения из океана энергии в различных формах, а в стоимость такого извлечения, которая определит, насколько быстро будет развиваться тот или иной способ добычи. Когда бы это время ни наступило,  переход к использованию энергии океана принесет двойную пользу: сэкономит общественные средства и сделает более жизнеспособной третью планету Солнечной системы - нашу Землю. Впервые удар  по общественному карману был нанесен в 1973 году подъемом цен на ископаемые виды топлива. Особенно возросли цены на нефть - основной вид топлива в XX веке,  используемый в промышленности, сельском хозяйстве, для отопления. Вслед  за этим произошло повышение уровня инфляции, а поскольку научные исследования и эксперименты тоже требуют ассигнований, поиски новых видов топлива подняли цены еще выше. Ископаемые виды топлива истощаются,  мы вынуждены их экономить и  увеличивать  энергообеспечение за счет строительства ядерных реакторов,  которые  требуют  значительных  финансовых затрат и вызывают опасения у людей,  живущих вблизи.  Конечно,  энергопотребление снизится, если быть более экономными. В США, население которых  составляет 5,3 %  от общемирового и где исполь-зуется 35 % всех видов ископаемого топлива и и гидроэлектроэнергии мира,  потребление  энергии может быть легко снижено до 30 - 32 %  , а то и до 25 %. Существует даже мнение, что по

  справедливости  Соединенные  Штаты  должны  снизить  потребление энергии до 5,3 %. Экономика, однако, лишь одна сторона дела. Другая сторона относится к странам развивающим-ся,  которые стараются  достичь уровня жизни  промышленно развитых стран,  определяющегося использованием большого количества энергии. Сегодня народы Азии, Африки и  Латинской  Америки стремятся перейти от общества,  в котором используется в основном физический труд,  к обществу с развитой индустрией. Для того чтобы удовлетворить потребность  в  равноправном

  распределении дешевой энергии между всеми странами, потребуется такое ее количество, которое, возможно, в тысячи раз превысит сегодняшний  уровень потребления,  и биосфера уже не справится с загрязнением,  вызываемым использованием обычных видов топлива. Тем  не менее президент Института исследований в области электроэнергии  в  Пало  Альто  (Калифорния) Чонси Старр полагает:  "Необходимо признать,  что мировое потребление энергии будет развиваться именно в этом направлении и так быстро,  как только позволят политические, экономические и технические факторы". Так как  соревнование  за  обладание истощающимися видами топлива обостряется,  расход общественных средств будет расти. Рост этот продолжится, так как необходимо бороться с загрязнением воздуха и воды, теплотой, выделяющейся при сгорании ископаемых видов топлива. Но стоит ли волноваться в поисках новых источников  ископаемого топлива ?  Зачем дискутировать по вопросу о строительстве ядерных реакторов ?  Океан наполнен энергией, чистой, безопасной и неиссякаемой. Она там, в океане, только и ждет высвобождения. И это - преимущество номер один. Второе преимущество заключается в том,  что использование энергии океана позволит Земле быть в дальнейшем обитаемой планетой. А вот альтернативный вариант,  предусматривающий увеличение использования органических и ядерных видов  топлива,  по мнению некоторых специалистов,  может привести к катастрофе: в атмосферу станет выделяться слишком большое  количество  углекислого газа и теплоты,  что грозит смертельной опасностью человечеству. "Пустяки, -  усмехаются  скептики.  - Мы постоянно совершенствуем воздушные фильтры и очистные сооружения. Еще год-два и фабричные дымовые трубы будут выпускать практически чистый воздух. Разве мы не очищаем выхлопные газы автомобилей ? Скоро вы вообще забудете, что такое пары двуокиси серы." Тем не менее углекислый газ и теплота,  выделяемые в  атмосферу дымовыми трубами фабрик и других промышленных предприятий, а иногда и большими многоквартирными комплексами,  которые используют ископаемые виды топлива, внушают большое беспокойство .Но кто  заметит,  что  в воздухе стало больше углекислого газа ?  Он бесцветен и не имеет запаха. Он пузырится в прохладительных напитках. А кто заметит постепенное, медленное повышение атмосферной температуры Земли на один,  два или три градуса по Фаренгейту ? Заметит планета, когда углекислый газ через некоторое время окутает ее подобно одеялу,  которое перестанет пропускать избыточное тепло в космос. Жак Кусто,  пионер освоения и исследования океана, считает: "Когда  концентрация углекислого газа достигнет определенного уровня, мы окажемся как будто в парнике". Это значит, что теплота, выделяемая  Землей,  будет  задерживаться  под  слоем стратосферы. Накапливаю-щееся тепло повысит общую  температуру. А увеличение ее даже на один, два или три градуса по Фаренгейту приведет к таянию ледников.  Миллионы тонн растаявшего льда поднимут уровень  морей на 60 метров.  Города на побережье и в долинах больших рек окажутся затопленными.

  По данному  вопросу, как и по многим другим, ученые разделились на два лагеря. В одном лагере считают, что утолщающееся одеяло углекислого  газа вызовет повышение температуры и приведет к таянию ледников, то есть, по определению доктора Говарда Уилкокса, превратить Землю в парник. Сторонники другого лагеря полагают, что то же самое одеяло будет преграждать путь теплу, излучаемому солнцем, что станет причиной наступления новой эры оледенения. Итак, что же человечество должно делать ? Будем ли мы истощать остатки ископаемого топлива,  строить все большее число ядерных реакторов,  рискуя изменить температуру атмосферы, или же обратимся к океану - кладезю неиссякаемой энергии - и будем искать способ извлечения этой энергии для достижения наших целей - вот в чем заключается вопрос. Накануне вступления в 21 век ученые-океанологи  призывают прекратить пустые дискуссии и отказаться от надежды на то, что

  "технологическое  развитие разрешит все проблемы  на суше".  Они хотят обратить внимание общества на океан,  который заряжается энергией внеземного происхождения, энергией доступной, не загрязняющей окружающую среду и возобновляемой.

  Атомная энергия

  ****************

  Открытие  излучения  урана  впоследствии  стало  ключом  к энергетическим кладовым природы.

  Главным, сразу  же  заинтересовавшим  исследователей,  был вопрос:  откуда берется энергия лучей,  испускаемых ураном,  и почему уран всегда чуточку теплее окружающей среды? Под сомне-

  ние ставился либо закон сохранения энергии,  либо утвержденный веками принцип неизменности атомов?  Огромная научная смелость требовалась от ученых, которые перешагнули границы привычного, отказались от устоявшихся представлений. Такими смельчаками оказались молодые ученые Эрнест Резерфорд и Фредерик Содди. Два года упорного труда по изучению радиоактив-ности привели их к революционному по тем временам  выводу: атомы некоторых элементов подвержены распаду, сопровождающемуся излучением энергии в количествах,  огромных по сравнению с энергией, освобождающейся при обычных молекулярных видоизменениях. Невиданными темпами развивается  сегодня атомная энергетика. За тридцать лет общая мощность ядерных энергоблоков выросла с 5 тысяч до 23 миллионов киловатт! Некоторые ученые высказывают мнение,  что к 21 веку около половины всей электроэнергии в мире будет вырабатываться на атомных   электростанциях. В принципе энергетический ядерный реактор устроен довольно просто -в нем,  так же как и в обычном котле, вода превращается в пар.  Для этого используют  энергию,  выделяющуюся  при цепной  реакции распада атомов урана или другого ядерного топлива. На атомной электростанции нет громадного парового котла,  состоящего из тысяч километров стальных трубок, по которым при огромном давлении циркулирует вода, превращаясь в пар. Эту махину заменил относительно небольшой ядерный реактор. Самый распространенный в настоящее время тип реактора водографитовый. Еще одна распространенная конструкция реакторов- так называемые  водо - водяные.  В  них вода не только отбирает тепло от твэлов,  но и служит замедлителем  нейтронов  вместо  графита. Конструкторы довели мощность таких реакторов до миллиона кило-

  ватт. Могучие  энергетические агрегаты установлены на Запорожской,  Балаковской и других атомных электростанциях. Вскоре реакторы такой конструкции,  видимо,  догонят по мощности и  рекордсмена - полуторамиллионик с Игналинской АЭС. Но все-таки будущее ядерной энергетики,  по-видимому, останется за третьим типом реакторов, принцип работы и конструкция которых предложены учеными,  - реакторами на быстрых нейтронах.  Их называют еще реакторами-размножителями. Обычные реакторы используют замедленные нейтроны,  которые вызывают цепную  реакцию в довольно редком изотопе- уране-235,  которого в природном уране всего около одного  процента.  Именно  поэтому приходится строить огромные заводы,  на которых буквально просеивают атомы урана,  выбирая из них атомы лишь одного  сорта урана-235.  Остальной  уран в обычных реакторах использоваться не может.  Возникает вопрос: а хватит ли этого редкого изотопа урана  на  сколько-нибудь продолжительное время или же человечество вновь столкнется с  проблемой  нехватки  энергетических ресурсов ? Более тридцати лет назад эта проблема была поставлена перед  коллективом лаборатории Физико-энергетического института. Она была решена. Руководителем лаборатории Александром Ильичом  Лейпунским  была  предложена  конструкция  реактора на быстрых  нейтронах. В 1955 году была построена первая такая установка. Преимущества реакторов на быстрых нейтронах очевидны.  В них для получения энергии можно использовать все  запасы  природных  урана  и тория,  а они огромны только в Мировом океане

  растворено  более четырех миллиардов тонн урана. Но все  400 атомных электростанции,  работающих сейчас на планете, не могут создать угрозу, хотя бы сравнимую с угрозой, исходящей от 50 тысяч боеголовок. Нет сомнения в том, что атомная энергетика заняла прочное место в энергетическом балансе человечества.  Она безусловно будет развиваться и впредь, без отказано поставляя столь необходимую людям энергию.  Однако понадобятся дополнительные меры

  по  обеспечению  надежности атомных электростанций,  их безаварийной работы,  а ученые и инженеры сумеют  найти  необходимые решения. 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Заключение

  **********

  За время  существования нашей цивилизации много раз происходила смена традиционных источников энергии на  новые,  более  совершенные. И не потому, что старый источник был исчерпан.Солнце светило и обогревало человека всегда: и тем не менее однажды люди приручили огонь, начали жечь древесину. Затем древесина уступила  место  каменному  углю.  Запасы

Информация о работе Нетрадиционные источники энергии