Автор работы: Пользователь скрыл имя, 21 Ноября 2012 в 01:26, реферат
Генная инженерия является наиболее перспективной и ведущей разработкой в сфере современных биотехнологий. Биотехнология – это обширное понятие, которое включает в себя достаточно широкий комплекс различных процессов по модификации биологических организмов для обеспечения потребностей человека. К методам биотехнологии можно отнести, к примеру, эксперименты по гибридизации и науку о селекции, целями которых является изменение различных биологических организмов с целью улучшения их качеств.
На мой взгляд, генетическая модификация организмов при разумном контроле над этим процессом, способна решить некоторые серьезные проблемы современности. В частности, применения генной модификации в медицине с целью лечения различных заболеваний мне кажется положительным явлением, не вызывающим никаких нареканий на данном этапе развития науки.
Что касается применения генетической модификации в сельском хозяйстве и распространении генно-модифицированных продуктов, то, на мой взгляд, их гипотетическая опасность для здоровья человека фактически не подтверждается. Мне кажется, что если стандартные исследования по безопасности этих продуктов говорят о том, что их использование возможно, то они не нуждаются в каких-либо дополнительных исследованиях. ГМО в данном случае нужно рассматривать как некий новый вид растения или продукта и при условии, что он отвечает всем стандартным нормам безопасности продуктов питания, его использование следует однозначно разрешать. Также я разделяю ту точку зрения, что ГМП ввиду особого контроля к ним, улучшения их свойств на генном уровне и отсутствия необходимости применения различных вредных для человека удобрений при выращивании могут быть даже более безопасными, чем обычные продукты сельского хозяйства.
Вопросы клонирования представляют серьезные этические проблемы, когда вопрос заходит о клонировании человека. На данном этапе доводы о необходимости репродуктивного клонирования людей, на мой взгляд, недостаточно убедительны, а потому запрет на репродуктивное клонирование мне кажется обоснованным. Однако это не означает, что все исследования в данной области следует прекратить, ведь в том случае, если наука сможет дать большую вероятность выживания клонов, а общественность сможет решить другие спорные вопросы, репродуктивное клонирование вполне может быть разрешено.
Вопрос терапевтического клонирования также достаточно сложен, ведь для получения стволовых клеток необходимо остановить развитие эмбриона, который в принципе может развиться в ребенка. Мне кажется, что эта этическая проблема в некотором роде близка проблеме абортов. Однако с учетом всех обстоятельств, я склонен выступать за разрешение терапевтического клонирования, т.к. это способно спасти жизнь человека ценой возможной жизни, прерванной на этапе зарождения.
Что же касается самого изучения и исследования вопросов клонирования, в частности вопросов репродуктивного клонирования животных, на мой взгляд, оно должно быть разрешено, так как запрещать его неразумно в контексте использования животных в любых других видах лабораторных исследований.
Определение клетки. Типы клеток
Клетка представляет собой обособленную, наименьшую по размерам структуру, которой присуща вся совокупность свойств жизни и которая может в подходящих условиях окружающей среды поддерживать эти свойства в самой себе, а также передавать их в ряду поколений. Клетка, таким образом, несет полную характеристику жизни. Вне клетки не существует настоящей жизнедеятельности. Поэтому в природе планеты ей принадлежит роль элементарной структурной, функциональной и генетической единицы.
В природе существует значительное разнообразие клеток, различающихся по размерам, форме, химическим особенностям. Число же главных типов клеточной организации ограничено двумя. Выделяют прокариотический и эукариотический типы с подразделением второго на подтип, характерный для простейших организмов, и подтип, характерный для многоклеточных.
Клеткам прокариотического типа свойственны малые размеры (не более 0,5—3,0 мкм в диаметре или подлине), отсутствие обособленного ядра, так что генетический материал в виде ДНК не отграничен от цитоплазмы оболочкой. В клетке отсутствует развитая система мембран. Генетический аппарат представлен ДНК единственной кольцевой хромосомы, которая лишена основных белков — гистонов (гистоны являются белками клеточных ядер). Благодаря значительному количеству диаминокислот аргинина и лизина они имеют щелочной характер.
Различия прокариотических и эукариотических клеток по наличию гистонов указывают на разные механизмы регуляции функции генетического материала. В прокариотических клетках отсутствует клеточный центр. Не типичны внутриклеточные перемещения цитоплазмы и амебоидное движение. Время, необходимое для образования двух дочерних клеток из материнской (время генерации), сравнительно мало и исчисляется десятками минут. К прокариотическому типу клеток относятся бактерии и синезеленые водорослей.
Эукариотический тип клеточной организации представлен двумя подтипами. Особенностью организмов простейших является то, что они (исключая колониальные формы) соответствуют в структурном отношении уровню одной клетки, а в физиологическом — полноценной особи. В связи с этим одной из черт клеток части простейших является наличие в цитоплазме миниатюрных образований, выполняющих на клеточном уровне функции жизненно важных органов, аппаратов и систем органов многоклеточного организма. Таковы (например, у инфузорий) цитостом, цитофарингс и порошица, аналогичные пищеварительной системе, и сократительные вакуоли, аналогичные выделительной системе.
В традиционном изложении клетку растительного или животного организма описывают как объект, отграниченный оболочкой, в котором выделяют ядро и цитоплазму. В ядре наряду с оболочкой и ядерным соком обнаруживаются ядрышко и хроматин. Цитоплазма представлена ее основным веществом (матриксом, гиалоплазмой), в котором распределены включения и органеллы.
Продукты микробного синтеза
Микробиологический синтез, синтез структурных элементов или продуктов обмена веществ микроорганизмов за счёт присущих микробной клетке ферментных систем. При Микробиологический синтез, как и любом органическом синтезе, сложные вещества образуются из более простых соединений. Микробиологический синтез следует отличать от брожения, в результате которого тоже получаются различные продукты микробного обмена (например, спирты, органические кислоты), но преимущественно за счёт распада органического вещества. Значительная часть продуктов, образующихся в ходе Микробиологический синтез, обладает физиологической активностью и представляет практическую ценность для народного хозяйства.
К Микробиологический синтез относят широкий круг процессов. 1. Накопление микробной массы для использования её: а) в качестве белково-витаминных добавок к кормам; б) как источника получения белков, липидов, ферментов, токсинов, витаминов, антибиотиков; в) для борьбы с паразитами животных и растений; г) в качестве носителя ферментативной активности в реакциях микробиологической (энзиматической) трансформации органических соединений. 2. Получение накапливающихся вне микробной клетки метаболитов, в том числе ферментов, токсинов, антибиотиков, аминокислот, витаминов, нуклеотидов и т.п.
Микробиологический синтез осуществляется внутри клетки при активации низкомолекулярных компонентов (например, коферментом А) и участии нуклеотид фосфатов, чаще всего адениловых производных (см. Аденозинфосфорные кислоты). Затем многие метаболиты выводятся из клетки в среду. Характерная особенность микроорганизмов — их способность к сверхсинтезу, т. е. избыточному образованию некоторых продуктов обмена веществ (многих аминокислот, нуклеотидов, витаминов), превышающему потребность микробной клетки. Так, глутаминовая кислота при сверхсинтезе может накапливаться в количестве свыше 10 мг/мл среды (культура Micrococcus glutamicus), витамин B2 — до 1—2 мг/мл (грибы Eremothecium ashbyii u Ashbya gossipii), вместо обычных сотых и даже тысячных долей мг. Способность к сверхсинтезу того или иного соединения свойственна определённым видам микроорганизмов, которыми, как правило, и пользуются в качестве продуцентов при производстве соответстветствующих метаболитов путём Микробиологический синтез При этом применяют не только культуры, отобранные из природных источников, но и специально выведенные искусственным путём мутанты — штаммы, у которых сверхсинтез — следствие нарушений обмена веществ под воздействием мутагенов. Применение мутантов позволяет значительно увеличить выход ряда продуктов. Например, выведены культуры с высоким уровнем сверхсинтеза лизина, инозиновой кислоты, некоторых витаминов. При помощи мутантов удалось в 100—150 раз поднять активность биосинтеза пенициллина; мутантные штаммы используются при производстве как этого, так и др. антибиотиков.
В процессе Микробиологический синтез получают ряд продуктов, причём за счёт самых разных соединений углерода и азота. Это обусловливается большим разнообразием ферментных систем микроорганизмов. Так, для синтеза белков, нуклеиновых кислот и др. метаболитов клетки могут использовать в зависимости от особенностей культуры разные неорганические источники азота, а из соединений углерода — различные углеводы, органические кислоты (в т. ч. уксусную кислоту), жидкие, твёрдые или газообразные углеводороды и др. Определённые виды, способные к хемосинтезу или фотосинтезу, в качестве источника углерода могут усваивать углекислый газ. Т. о., подбор соответствующих культур даёт возможность получать путём Микробиологический синтез желаемые вещества из дешёвого и доступного сырья. Эти особенности делают Микробиологический синтез весьма эффективным способом производства многих соединений; часть из них (например, многие антибиотики) экономически выгодно получать ныне только таким путём.
Некоторые продукты Микробиологический синтез давно использовались человеком (например, пекарские дрожжи), но широкое промышленное применение Микробиологический синтез получил начиная с 40—50-х гг. 20 в. Прогресс в этой области связан прежде всего с открытием пенициллина, что побудило начать детальные исследования у микроорганизмов продуктов обмена веществ, обладающих физиологической активностью. Освоение в промышленных масштабах производства пенициллина привело к решению многих микробиологических, технологических и инженерных задач. Это, наряду с расширением производства дрожжей как белково-витаминных добавок к кормам, послужило основой для развития промышленного Микробиологический синтез Так, в частности, были созданы специальные аппараты — ферментёры, с помощью которых можно вести технологический процесс биосинтеза без доступа посторонних микроорганизмов, снабжённые устройствами для перемешивания среды и для подачи стерильного воздуха.
Технологически
современный процесс Микробиологический синтез состоит из ряда последовательных
этапов (операций). Главные из них: подготовка
необходимой культуры микроорганизма-продуцента;
подготовка питательной среды; выращивание
посевного материала; культивирование
продуцента в заданных условиях, в ходе
которого и осуществляется Микробиологический синтез, часто называемый ферментацией
(например, ферментация антибиотиков);
фильтрация и отделение биомассы; выделение
и очистка требуемого продукта, когда
это необходимо; сушка. Процессы выделения
и очистки, часто занимающие важное место
среди др. технологических операций, определяются химической природой получаемого вещества
и могут включать экстракционные и хроматографические методы, кристаллизацию, осаждение и др. Наиболее прогрессивным
способом культивирования считается непрерывный
— с непрерывными подачей питательной
среды и выводом продуктов Микробиологический синтез Так производят, например, микробную
биомассу (кормовые дрожжи). Однако непрерывный
способ разработан далеко ещё не для всех
процессов Микробиологический синтез, и большинство метаболитов
(аминокислоты, антибиотики, витамины)
получают периодическим способом — с
выводом продукта в конце процесса. В некоторых
случаях (например, при производстве ряда
ферментов) продуценты выращивают не в
ферментёрах с аэрацией и перемешиванием
(глубинный способ), а на поверхности питательной
среды — т. н. поверхностным способом.
Антибиотики — один из первых продуктов Микробиологический синтез, которые широко производят
для медицины и сельского хозяйства. Большинство
антибиотиков накапливается вне клеток
микроорганизма-продуцента, которыми
в основном являются актиномицеты, некоторые грибы и бактерии,
главным образом их мутантные формы. Антибиотические
препараты, употребляемые преимущественно
в медицине, отличаются высокой степенью
чистоты. На корм животным чаще идёт концентрат
среды после выращивания в ней продуцента,
иногда вместе с биомассой, содержащий
значительное количество др. продуктов
обмена веществ продуцента, в том числе
витамины, аминокислоты, нуклеотиды и т.п.
Некоторые антибиотики (фитобактериомицин,
трихотецин, полимиксин) используются
как средства защиты растений от фитопатогенных
микроорганизмов.
Витамины, провитамины, коферменты. Методом Микробиологический синтез производят в основном витамин B12, а частично и витамин B2 и его коферментную форму — флавинадениндинуклеотид (ФАД), каротиноиды, эргостерин. Кроме того, развивается производство разных др. соединений этого типа (никотинамидные коферменты и др.). Витамин B12 получают практически только путём Микробиологический синтез Основными продуцентами при этом служат пропионовокислые бактерии, актиномицеты, а также комплекс метанобразующих бактерий, использующих отходы бродильной промышленности (послеспиртовые, ацетоно-бутиловые барды и др.) и применяемых в основном для получения кормового концентрата (высушенная среда с биомассой продуцента). Многие микроорганизмы способны к сверхсинтезу витамина B2 с активным выделением его в среду, но в качестве промышленных продуцентов употребляют наиболее активные культуры, главным образом грибы Eremothecium ashbyii и Ashbya gossipii. Помимо свободного витамина, при помощи Е. ashbyii получают также ФАД. b-каротин — провитамин витамина А, получаемый также др. способами (извлечение из моркови и др. объектов, химический синтез), образуется наряду с др. каротиноидами мн. микроорганизмами и содержится в клетках, придавая биомассе характерную окраску от жёлтой до красных тонов; однако наибольший практический интерес представляет культура Blakeslea trispora — самый активный синтетик, которым и пользуются в основном в качестве продуцента при промышленном биосинтезе. Эргостерин — провитамин витамина D2 — содержится в клетках многих дрожжей; основным источником его промышленного получения служат пекарские дрожжи. Однако уже имеются дрожжевые культуры со значительно более высоким уровнем накопления эргостерина. Комплекс витаминов и коферментов синтезируется, кроме того, в процессе развития дрожжей и накапливается в дрожжевой биомассе, которая привлекает всё более пристальное внимание как источник этих соединений.
Ферменты, синтезируемые микроорганизмами, и создаваемые на их основе ферментные препараты приобрели большое значение в народном хозяйстве, особенно в пищевой промышленности. Продуцентами ферментов — протеаз, амилаз, фосфатаз, целлюлаз, пектиназ, глюкозооксидазы, липаз, каталазы — служат многие мицелиальные грибы, некоторые актиномицеты и бактерии. В зависимости от локализации фермента подвергают обработке микробную массу или фильтрат, свободный от микробных клеток. Получение чистых ферментных препаратов связано со значительными технологическими трудностями. Такие препараты обычно очень дороги; поэтому в промышленности используют комплексные препараты, содержащие, например, протеазы и липазы, протеазы и амилазы.
Информация о работе Генная инженерия: возможности, перспективы и сложности