Автор работы: Пользователь скрыл имя, 23 Марта 2012 в 09:56, доклад
В отличие от чисто газовых месторождений газоконденсатные разрабатываются для получения не только газа, но и высокомолекулярных компонентов — газового конденсата, ценнейшего сырья нефтехимического производства.
Нередко конденсат является основным целевым сырьем. Поэтому режимы разработки газоконденсатных месторождений следует оценивать как способы добычи и газа, и — особенно — конденсата.
Компонентный состав пластовой смеси
Для изучения процессов вытеснения газа водой, жирного газа сухим, а также некоторых сопутствующих им явлений пользовались различными математическими моделями. Основные расчеты технологических показателей разработки были выполнены применительно к трехмерной трехфазной модели.
Математическая модель описывает нестационарное течение двух- или трехфазной системы с учетом вязкости, капиллярных и гравитационных сил. Все агенты считаются сжимаемыми, а их свойства (объемный фактор, вязкость) полагаются однозначными функциями давлений. Фазовые проницаемости задаются в виде функций. При решении данной задачи использовалась концепция «вертикального равновесия», позволяющая свести трехмерную фильтрацию к двухмерной.
Согласно этой концепции, потенциалы фаз Фжг, Фсг и Фв — постоянны по мощности пласта. Это означает, что давление по вертикали (мощности) изменяется по законам гидростатики, т. е. пластовая система находится в состоянии капиллярно-гравитационного равновесия. Строго говоря, данная концепция равнозначна допущению о бесконечно большой проницаемости — по вертикали. На практике же достаточным основанием для использования
«вертикального равновесия» является высокая проницаемость по вертикали, существенное проявление гравитационных эффектов, низкие вязкости агентов и т. п. Все эти условия характерны для месторождения Кэйбоб, в связи с чем концепцию «вертикального равновесия» применили для расчетов продвижения подошвенной воды в залежь, а также перемещения границы газ — газ при процессе рециркуляции газа. В результате решения соответствующей системы уравнений получается распределение насыщенностей (площадное) в каждой ячейке моделируемой области фильтрации. Допущение вертикального равновесия позволяет установить распределение насыщенности и по мощности залежи
(высоте ячейки). Таким образом, метод вертикального равновесия позволяет существенно облегчить (не в ущерб точности результатов) решение задачи.
На основании приведенной методики произвели расчеты продвижения воды в газонасыщенную часть залежи, а также текущего объемного коэффициента охвата. Кроме того, с помощью метода материального баланса рассчитали показатели добычи газа и конденсата для различных способов разработки месторождения. В указанных расчетах были сделаны следующие допущения.
1. Для различных вариантов процесса обратной закачки сухого газа начальная мощность промысла по газу устанавливалась на уровне 133 % от номинальной пропускной способности газоперерабатывающего завода без дополнительного бурения эксплуатационных скважин.
2. Для вариантов разработки на режиме истощения, а также истощения с компенсацией пиковых нагрузок за счет резервных мощностей ГПЗ и закачкой избыточных объемов газа в пласт в периоды пониженного потребления предусматривалась мощность промысла по газу, обеспечивающая удовлетворение пиковых потребностей с бурением при необходимости дополнительных скважин.
3. Расход газа на топливо и собственные нужды промысла принимался на уровне 5 % от суммарного объема остаточного газа.
4. Среднее пластовое давление однозначно определяет состав продукции скважины. Испарение выпавшего конденсата не принимается в расчет при определении добычи конденсата.
5. Вторжение воды так же влияет на состояние пластовой газоконденсатной системы, как и закачка газа; поэтому под коэффициентом охвата понимается отношение объема порового пространства, занятого закачиваемым газом и вторгшейся водой, к суммарному поровому объему, занятому углеводородами.
6. Учет влияния темпа вторжения воды обеспечивается проведением расчетов для различных факторов обводнения. Фактору обводнения (ФО-0) соответствует газовый режим, т. е. продвижение воды отсутствует. При ФО-1 вода продвигается с темпом, рассчитанным по упомянутой методике на основании приведенных исходных данных. При ФО-2 темп вторжения воды в 2 раза превышает предыдущий.
7. Закачка газа прекращается по достижении коэффициента охвата, равного
55 %, для всех вариантов.
8. В период доразработки на истощение соотношение отборов сухого и жирного газов поддерживается таким же, каким оно является в момент прекращения рециркуляции.
9. Давление при режиме истощения залежи, исходя из минимально допустимого давления на устье 2,1 МПа, составляет 4,1 МПа для всех вариантов.
10. Суточный темп отбора газа в период доразработки определялся из условий контракта на продажу в объеме 1/8400 от извлекаемых запасов газа.
Результаты тщательного математического моделирования процесса разработки площади В месторождения Кэйбоб свидетельствуют о безусловной перспективности способа разработки при частичной закачке газа даже в условиях, когда разработка на режиме истощения характеризуется сравнительно высокой конденсатоотдачей,
При разработке газоконденсатного месторождения Нокс-Бромайд, залегающего на большой глубине (4600 м), с поддержанием давления путем рециркуляции газа повышалась не только конденсатоотдача, но и газоотдача. Именно поэтому оправданы чрезвычайно высокие капиталовложения для поддержания давления на месторождении (стоимость одной скважины Нокс-Бромайд достигала 1 млн. долл.).
Месторождение расположено в штате Оклахома (США). Открытое в 1956 г., оно разрабатывалось на режиме истощения с 1960 до 1962 г. За этот период было добыто 538 млн. м3 газа и 480 тыс.м3 конденсата. Продуктивные горизонты месторождения II и III представлены весьма плотными песчаниками с низкими коллекторскими свойствами (пористость 4,5 — 6,8 %, проницаемость
45,10-15 м2, водонасыщенность 11 %). Структура представляет собой вытянутую с северо-запада на юго-восток антиклиналь размерами 16x2 км. Запасы газа в двух горизонтах составляли 8,1 млрд.м3, запасы — конденсата (точнее, широкой фракции С3+) — около 6 млн. м3. Содержание фракции С3+ в газе горизонта II — 1030 см3/м3, в газе горизонта III — 510 см3/м3.
Начальное пластовое давление (расчетное) было равно 65,7 МПа, пластовая температура 114 °С. Давление начала конденсации рнк пластового газа горизонта II равно 45,1 МПа, горизонта III P 38,9 МПа. Отметим, что, наряду со значительным превышением пластового давления над гидростатическим (в 1,3—1,4 раза), пластовой газоконденсатной системе было свойственно исключительно большое нефтенасыщение конденсатом: рнк отличается от рпл для горизонта II на 20,6 МПа, а для горизонта III на
26,8 МПа.
Лабораторные и промысловые исследования показали, что специфические особенности строения песчаника свиты бромайд обусловливают резкое снижение его фазовой проницаемости для газа по мере выпадения конденсата в пласте.
При изучении шлифов кернов было обнаружено наличие на зернах песчаника конденсатной пленки, резко снижающей проницаемость породы. Полученная исследователями кривая фазовой проницаемости по газу свидетельствовала о том, что фильтрация газа практически прекращается по достижении насыщенности жидкой фазой 50 %. Именно в результате этого ожидался исключительно низкий коэффициент газоотдачи при разработке на режиме истощения (11 %). Иными словами, выпадающий в призабойной зоне конденсат
"запирает" газ в залежи. По данным расчетов, разработка на режиме истощения позволяла добыть всего около 900 млн. м3 газа и 850 тыс. м3 конденсата: тем самым рентабельная разработка месторождения прекратилась бы уже в 1965 г. В то же время разработка при поддержании давления обеспечивала извлечение 5 млрд. м3 газа и 5,25 млн. м3 конденсата. Давление в пласте (в призабойной зоне) следовало поддерживать более высоким, чем рнк. По-видимому, в данном случае оптимальным условием является рзаб > рнк (выпадающий в призабойной зоне конденсат, несмотря на высокую насыщенность, остается малоподвижным или вообще неподвижным в связи с крайне низкими фильтрационными характеристиками среды).
Согласно проекту разработки с рециркуляцией газа, из десяти имеющихся эксплуатационных скважин три предполагалось перевести под нагнетание. Объем закачки намечался на уровне 450 — 600 тыс. м3/сут, темп отбора - 400 — 500 тыс. м3/сут. Около 20 % закачиваемого газа приобретается со стороны; этот газ компенсирует уменьшение объема добываемого его количества за счет выделения конденсата, расхода на топливо, а также изменения сжимаемости газа по мере выделения конденсата.
При довольно низкой продуктивности скважин на месторождении Нокс-
Бромайд предполагалось широко использовать мероприятия по интенсификации притока и, в первую очередь, гидроразрыв пласта. Успешное проведение в 1960 г. на скважинах Нокс-Бромайда гидроразрыва впервые в мире было осуществлено на глубине 4600 — 4800 м. Применение процесса рециркуляции на этом месторождении, несмотря на огромные трудности технического, технологического и экономического характера, лишний раз подтверждает большие возможности этого способа разработки.
В качестве интересного примера разработки газоконденсатного месторождения с применением обратной закачки газа можно привести месторождение Ла Глория, на котором поддерживалось давление в течение 8 лет. В то время это был один из самых больших проектов по закачке газа с целью получения конденсата в штате Техас.
Залежь приурочена к структуре овальной формы. Продуктивная площадь составляет 1070 га. Этаж газоносности около 100 м.
В процессе разведки залежи и эксплуатационного бурения было пробурено около 40 скважин.
Глубина залегания продуктивного горизонта в центре структуры 1955 м.
Средняя мощность песчаника в этой зоне 10 м. Средняя пористость его 22,2 %, проницаемость 0,52?10-12м2. Начальное пластовое давение 23,9 МПа, температура 95 °С. Содержание связанной воды оценивалось в 20 %.
Запасы газа в залежи равнялись 3,95 млрд. м3 (при нормальных условиях).
Запасы конденсата (пропан+ ) составляли 1,07 млн. м3. Из этого количества пентаны + составляли 0,639 млн. м3, изо- и нормальные бутаны 0,178 млн. м3 и пропан 0,252 млн. м3.
Закачка газа на месторождении Ла Глория началась в мае 1941 г. К этому времени на месторождении было шесть продуктивных и две нагнетательные скважины. В последующие годы число эксплуатационных скважин увеличилось до восьми, а нагнетательных до четырех. В течение первых 4 лет из пласта в среднем отбиралось 1415 тыс. м3/сут газа. В дальнейшем ввиду того, что нагнетаемый сухой газ стал прорываться в эксплуатационные скважины, отбор из пласта уменьшили до 595 тыс. м3/сут.
За все время нагнетания в пласт было возвращено 97 % добытого сухого газа. Для обслуживания установки газ получали со стороны.
Благодаря малым темпам отбора и возврату практически всего добытого сухого газа пластовое давление снизилось очень незначительно. Поэтому было предотвращено выпадение конденсата в пласте и его потери. Это подтверждается тем, что в продукции скважины, пробуренной в заключительной стадии процесса в зоне, не охваченной нагнетанием сухого газа, содержание конденсата не отличалось от начального.
В процессе закачки газа с целью контроля за его перемещением по пласту из каждой скважины раз в три месяца отбирались пробы газа для определения содержания конденсата.
Исследования показали, что в зоне, охваченной закачкой газа, коэффициент вытеснения достигал 80 %. Коэффициент охвата при выбранном расположении нагнетательных и эксплуатационных скважин по расчетам составлял 85 %.
Следовательно, в результате проведения процесса из пласта было добыто 68
% первоначально содержащегося конденсата. При последующей эксплуатации пласта на истощение было добыто еще 20,8 % конденсата. Всего из пласта было отобрано 88,8 % первоначально содержащегося конденсата (С5+).
Нагнетание сухого газа прекратили в середине 1949 г., когда содержание конденсата в продукции резко уменьшилось.
При разработке отечественных газоконденсатных месторождений неоднократно предпринимались попытки реализовать сайклинг-процесс, однако, как правило, дело ограничивалось физическим или математическим моделированием, а также проведением технико-экономических расчетов.
Одним из возможных объектов применения сайклинг-процесса было крупнейшее в европейской части России Вуктыльское газоконденсатное месторождение. Во
ВНИИГАЗе были выполнены расчеты по извлечению конденсата из Вуктыльского месторождения при закачке сухого газа на различных уровнях пластового давления.
Общий коэффициент извлечения конденсата для Вуктыльского месторождения за счет его растворения в сухом газе согласно расчетам не превышал 70 — 75 %, т.е. по сравнению с разработкой на истощение коэффициент извлечения конденсата мог быть увеличен на 30 — 35 %. Объясняется это значительным утяжелением фракционного состава конденсата, выпавшего в пласте, в процессе закачки сухого газа. Автор расчета Г.С. Степанова полагала, что достичь такого увеличения коэффициента извлечения выгоднее при "меньшем" объеме закачиваемого газа, т.е. при более высоком давлении. В этом случае и фракционный состав добываемого конденсата будет тяжелее и, следовательно, коэффициент извлечения его из газа на промысловых установках будет выше.
Если закачка газа осуществляется при давлении 5 — 6 МПа, то в газовую фазу переходят фракции конденсата, выкипающие до 150—180°С (т.е. бензиновые фракции), в количестве около 60 г/м. Низкие давления на устье эксплуатационных скважин приводят к необходимости компримирования газа и его последующего охлаждения. Для выделения конденсата в этом случае необходимо осуществлять сепарацию при достаточно низких температурах — в пределах минус 40 — минус 50 °С или применять процесс адсорбции. Если же газ закачивать при пластовых давлениях выше 20 МПа, то для создания низких температур в сепараторе можно использовать турбодетандеры.
Одним из авторов работы [52] была обоснована схема использования турбодетандера при относительно низких пластовых давлениях (около 10 МПа).
При этом трубодетандер устанавливался перед дожимной компрессорной станцией. В условиях Вуктыльского месторождения такая схема позволила определенное время вести подготовку газа и конденсата к транспорту более эффективно.
Основной недостаток, мешающий внедрению турбодетандеров для создания низких температур, — это изменяющийся перепад давления на турбодетандере при снижении давления в залежи. Если закачка газа будет осуществляться в течение длительного времени, турбодетандеры экономически окажутся значительно выгодней, чем холодильные установки. Для максимального извлечения конденсата из добываемого газа следует применять процессы низкотемпературной масляной адсорбции или короткоцикловой адсорбции. Тогда потери конденсата будут минимальными и эффект от закачки сухого газа в пласт будет наибольшим.