Паровая турбина

Автор работы: Пользователь скрыл имя, 25 Января 2013 в 19:27, реферат

Описание

Паровая турбина — вид парового двигателя, в котором струя пара, действуя на лопатки ротора, вызывает его вращение. В настоящее время паровые турбины применяются вместе с котлами, работающими на органическом топливе или с ядерными реакторами на электростанциях и крупных судах и кораблях. Паровые турбины используются в качестве первичных двигателей промышленных когенерационных установок в течение многих лет. Пар, образующийся в паровом котле, расширяясь, под высоким давлением проходит через лопатки турбины. Турбина вращается и производит механическую энергию, используемую генератором для производства электричества.

Содержание

3-Паровая турбина
3-Классификация
4-Плюсы и минусы
5-Из истории паровой турбины
6- Карл-Густав-Патрик де Лаваль
8- Чарльз Алджернон Парсонс
10- Морские котлотурбинные установки
12- Триумф паротурбинной энергетики
13- Приложение
15- Литература

Работа состоит из  1 файл

referat.doc

— 2.07 Мб (Скачать документ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Реферат по теме:

 

«Паровая турбина»

 

 

 

 

 

 

 

Выполнил:

Проверил:

 

 

 

 

 

 

 

 

 

2012

Содержание:

 

2-Содержание

3-Паровая турбина

3-Классификация

4-Плюсы и минусы

5-Из истории паровой турбины

6- Карл-Густав-Патрик де Лаваль

8- Чарльз Алджернон  Парсонс

10- Морские котлотурбинные  установки

12- Триумф паротурбинной энергетики

13- Приложение

15- Литература

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Паровая турбина — вид парового двигателя, в котором струя пара, действуя на лопатки ротора, вызывает его вращение. В настоящее время паровые турбины применяются вместе с котлами, работающими на органическом топливе или с ядерными реакторами на электростанциях и крупных судах и кораблях. Паровые турбины используются в качестве первичных двигателей промышленных когенерационных установок в течение многих лет. Пар, образующийся в паровом котле, расширяясь, под высоким давлением проходит через лопатки турбины. Турбина вращается и производит механическую энергию, используемую генератором для производства электричества.

 

Электрическая мощность системы зависит от того, на сколько  велик перепад давления пара на входе  и выходе турбины.

 

Для эффективной работы пар в турбину должен подаваться с высокими давлением и температурой (42 бар/400°С или 63 бар/480°С), (советские конденсационные турбины К-800-240 номинальная мощность 800 МВт, начальное давление 240 бар, 540°С). Такие условия предъявляют повышенные требования к котельному оборудованию, что приводит к прогрессивному росту капитальных расходов и стоимости сопровождения.

 

Преимуществом технологии является возможность использования  в котле самого широкого спектра  топлив, включая твердые. Однако использование  тяжёлых нефтяных фракций и твердого топлива снижает экологические  показатели системы, которые определяются составом отходящих из котла продуктов горения. По умолчанию, паровые турбины производят на много больше тепла, чем электричества, в результате имеют место высокие затраты на установленную мощность.

 

Классификация

 

Конденсационные собственно для производства электроэнергии, вся энергия расходуется на производство электроэнергии, выход пара с турбины в конденсатор производится с минимально возможным давлением и температурой (около 0,03бар, 30°С) для повышения термического КПД. как правило имеют большую мощность (в тепловых станциях до 1200 МВт, в атомных до 1500 МВт), используется только на электростанциях. Маркируются К-800-240, где

К - тип турбины (конденсационная)

800 - номинальная мощность, МВт

240 - давление свежего  пара, кгс/см2

С противодавлением весь выход пара производится с большим давлением и температурой обусловленные необходимостью, применяют для теплоснабжения и производства, электрическая мощность ограничена тепловой мощностью потребителя тепла. Маркируются Р-100-130/15, где

Р - тип турбины (с противодавлением)

100 - номинальная мощность, МВт

130 - давление свежего  пара, кгс/см2

15 - противодавление, кгс/см2

Теплофикационные и  промышленные совмещают в себе два  предыдущих типа: часть пара отбирается для производства или отопления, а часть доходит до конденсатора проходя полный цикл, применяются на теплоэлектроцентралях. Турбины с отопительным отбором маркируются Т-100/120-130, где

Т - тип турбины (с отопительным отбором)

100 - номинальная мощность, МВт

120 - максимальная мощность, МВт

130 - давление свежего пара, кгс/см2

 

Турбины с производственным отбором маркируются П-25/30-90/13, где

П - тип турбины (с производственным отбором)

25 - номинальная мощность, МВт

30 - максимальная мощность, МВт

90 - давление свежего  пара, кгс/см2

13 - номинальное давление пара в производственном отборе, кгс/см2

 

Плюсы

  • работа паровых турбин возможна на различных видах топлива: газообразное, жидкое, твердое
  • высокая единичная мощность
  • свободный выбор теплоносителя
  • широкий диапазон мощностей
  • внушительный ресурс паровых турбин

 

Минусы 

    • высокая инерционность паровых установок (долгое время пуска и останова)
    • дороговизна паровых турбин
    • низкий объем производимого электричества, в соотношении с объемом тепловой энергии
    • дорогостоящий ремонт паровых турбин
    • снижение экологических показателей, в случае использования тяжелых мазутов и твердого топлива

 

Из истории  паровой турбины

 

Девятнадцатый век не зря называли веком пара.С изобретением паровой машины произошел настоящий  переворот в промышленности, энергетике, транспорте. Появилась возможность механизировать работы, ранее требовавшие слишком много человеческих рук. Железные дороги резко расширили возможности тр\анспортировки грузов по суше. В море вышли огромные суда, способные двигаться против ветра и гарантировавшие своевременность доставки товаров. Расширение объемов промышленного производства поставило перед энергетикой задачу всемерного повышения мощности двигателей. Однако первоначально вовсе не высокая мощность вызвала к жизни паровую турбину...

 

Гидравлическая турбина как устройство для преобразования потенциальной энергии воды в кинетическую энергию вращающегося вала известна с глубокой древности. У паровой турбины история столь же долгая, ведь одна из первых конструкций известна под наименованием "турбины Герона" и датируется первым столетием до нашей эры. Однако сразу заметим - вплоть до XIX века турбины, приводимые в движение паром, являлись скорее техническими курьезами, игрушками, чем реальными промышленно применимыми устройствами.

 

И только с началом индустриальной революции в Европе, после широкого практического внедрения паровой машины Д. Уатта, изобретатели стали присматриваться к паровой турбине, так сказать, "вплотную". Создание паровой турбины требовало глубокого знания физических свойств пара и законов его истечения. Изготовление ее стало возможным только при достаточно высоком уровне технологии работы с металлами, поскольку потребная точность изготовления отдельных частей и прочность элементов были существенно более высокими, чем в случае паровой машины.

 

В отличие от паровой машины, совершающей работу за счет использования потенциальной энергии пара и, в частности, его упругости, паровая турбина использует кинетическую энергию струи пара, преобразуя ее во вращательную энергию вала. Важнейшей особенностью водяного пара является высокая скорость истечения его из одной среды в другую даже при относительно небольшом перепаде давлений. Так, при давлении 5 кгс/м2 струя пара, вытекающая из сосуда в атмосферу, имеет скорость около 450 м/с. В 50-х годах прошлого века было установлено, что для эффективного использования кинетической энергии пара окружная скорость лопаток турбины на периферии должна быть не менее половины скорости обдувающей струи, следовательно, при радиусе лопаток турбины в 1 м необходимо поддерживать частоту вращения около 4300 об/мин. Техника первой половины XIX века не знала подшипников, способных длительно выдерживать такие скорости. Опираясь на собственный практический опыт, Д. Уатт считал столь высокие скорости движения элементов машины недостижимыми в принципе, и в ответ на предупреждение об угрозе, которую могла создать турбина изобретенной им паровой машине, ответил так: "О какой конкуренции может идти речь, если без помощи Бога нельзя заставить рабочие части двигаться со скоростью 1000 футов в секунду?"

 

Однако время шло, техника совершенствовалась, и час практического примения паровой турбины пробил. Впервые  примитивные паровые турбины  были использованы на лесопилках в  восточной части США в 1883-1885 гг. для привода дисковых пил. Пар  подводился через ось и далее, расширяясь, направлялся по трубам в радиальном направлении. Каждая из труб заканчивалась изогнутым наконечником. Таким образом, по конструкции описываемое устройство являлось весьма близким к турбине Герона, обладало крайне низким к.п.д., но более подходило для привода высокооборотных пил, нежели паровая машина с ее возвратно-поступательным движением поршня. К тому же для нагрева пара использовалось, по тогдашним понятиям, бросовое топливо - отходы лесопильного производства.

 

Впрочем, эти первые американские паровые турбины широкого распространения не получили. Их влияние на дальнейшую историю техники практически отсутствует. Чего нельзя сказать об изобретениях шведа французского происхождения де Лаваля, имя которого сегодня известно любому двигателисту.

 

Карл-Густав-Патрик де Лаваль

 

Предки де Лаваля были гугенотами, вынужденно эмигрировавшими в Швецию в конце XVI века из-за преследований  на родине. Карл-Густав-Патрик ("основным" считалось все же имя Густав) родился  в 1845 г. и получил превосходное образование, окончив технологический институт и университет в Упсале. В 1872 г. де Лаваль стал работать в качестве инженера по химической технологии и металлургии, но вскоре заинтересовался проблемой создания эффективного сепаратора для молока. В 1878 г. ему удалось разработать удачный вариант конструкции сепаратора, получивший широкое распространение; вырученные средства Густав использовал для развертывания работ по паровой турбине. Толчок к занятию новым устройством дал именно сепаратор, поскольку он нуждался в механическом приводе, способном обеспечить частоту вращения не менее 6000 об/мин.

 

Для того, чтобы избежать применения всякого рода мультипликаторов, де Лаваль предложил разместить барабан  сепаратора на одном валу с простейшей турбиной реактивного типа. В 1883 г. на эту конструкцию был взят английский патент. Затем де Лаваль перешел к разработке одноступенчатой турбины активного типа, и уже в 1889 г. он получил патент на расширяющееся сопло (и сегодня термин "сопло Лаваля" является общеупотребительным), позволяющее уменьшить давление пара и повысить его скорость до сверхзвуковой. Вскоре после этого Густав сумел преодолеть и другие проблемы, возникавшие при изготовлении работоспособной активной турбины. Так, он предложил применить гибкий вал, диск равного сопротивления и выработал способ закрепления лопаток в диске.

 

На международной выставке в  Чикаго, проходившей в 1893 г., была представлена небольшая турбина де Лаваля мощностью 5 л.с. с частотой вращения 30 000 об/мин! Огромная скорость вращения являлась важным техническим достижением, но одновременно она стала и ахиллесовой пятой такой турбины, поскольку для практического применения она предполагала включение в состав силовой установки понижающего редуктора. В ту пору редукторы изготавливали, главным образом, одноступенчатыми, поэтому нередко диаметр большой шестерни в несколько раз превосходил размеры самой турбины. Необходимость применения громоздких зубчатых понижающих передач помешала широкому внедрению турбин де Лаваля. Самая большая одноступенчатая турбина мощностью 500 л.с. имела расход пара на уровне 6...7 кг/л.с.·ч.

 

Интересной особенностью творчества Лаваля можно считать его "голый  эмпиризм": он создавал вполне работоспособные  конструкции, теорию которых позднее  разрабатывали другие. Так, теорией гибкого вала впоследствии глубоко занимался чешский ученый А. Стодола, он же систематизировал основные вопросы расчета на прочность турбинных дисков равного сопротивления. Именно отсутствие хорошей теории не позволило де Лавалю добиться больших успехов, к тому же он был человеком увлекающимся и легко переключался с одной темы на другую. Пренебрегая финансовой стороной дела, этот талантливый экспериментатор, не успев реализовать очередное изобретение, быстро охладевал к нему, увлекшись новой идеей. Иного рода человеком был англичанин Чарльз Парсонс, сын лорда Росса.

 

Чарльз Алджернон Парсонс

 

Чарльз Парсонс родился в 1854 г. и получил классическое английское образование, закончив Кембриджский университет. Родом своей деятельности он избрал машиностроение и с 1976 г. стал работать на заводе Армстронга в Ньюкасле. Талант и изобретательность конструктора в сочетании с финансовыми возможностями родителей позволили Парсонсу быстро встать во главе собственного дела. Уже в 1883 г. он совладелец фирмы "Кларк, Чапмэн, Парсонс и Ко", а в 1889 г. - владелец собственного турбостроительного и динамостроительного завода в Гитоне.

 

Первую паровую многоступенчатую турбину реактивного типа Парсонс  построил в 1884 г. Она предназначалась  вовсе не для привода относительно маломощных сепараторов, а для работы совместно с электрическим генератором. Таким образом, уже с первого шага Парсонс правильно предугадал одну из наиболее перспективных областей применения паровых турбин, и в дальнейшем ему не пришлось разыскивать потребителей для своего изобретения. С целью уравновешивания осевого усилия пар подавался к середине вала турбины, а затем протекал к ее концам. Первая паровая турбина Парсонса имела мощность всего 6 л.с. и была подвергнута разнообразным испытаниям. Основные затруднения представляла разработка рациональной конструкции лопаток и способов их крепления в диске, а также обеспечение уплотнений. Уже в конструкции, датированной 1887 г., Парсонс применил лабиринтные уплотнения, что позволило перейти к турбинам с однонаправленным потоком пара. К 1889 г. число построенных турбин превысило 300 единиц, их мощность пока еще не достигла 100 л.с. при частоте вращения около 5000 об/мин. Такие турбины применялись преимущественно для привода электрических генераторов.

 

Взаимоотношения между компаньонами в "Кларк, Чапмэн, Парсонс и Ко" оказались далеко не безоблачными, и Парсонс вынужден был уйти, оставив бывшим коллегам и часть авторских прав, формально принадлежавших фирме. В связи с этим он надолго отказался от создания активных турбин (защищенных патентом) и перешел к разработке радиальных многоступенчатых турбин. Совершенствуя этот тип, конструктор сумел добиться впечатляющих результатов. Так, он уменьшил удельный расход пара с 44 до 12,7 кг/кВт·ч, но одновременно понял, что прежний аксиальный тип турбины был все же более перспективным. Начиная с 1894 г., восстановив права на патент, Парсонс вновь стал заниматься именно такими турбинами.

Информация о работе Паровая турбина