Разработка автоматизированной системы управления энергохозяйством Сосногорского ЛПУМГ

Автор работы: Пользователь скрыл имя, 10 Января 2013 в 22:01, курсовая работа

Описание

Для АСУ систем электроснабжения требуется высокое быстродействие на основных уровнях управления, адекватное скорости процессов, протекающих в электрических сетях. Это необходимо для осуществления релейной защиты и противоаварийной автоматики, осциллографирования быстрых аварийных переходных процессов и развития аварий, регистрации последовательности срабатывания защит. Поэтому в современных АСУ-ЭС устройства ввода информации обеспечивают дискретизацию измерений режимных параметров с периодичностью опроса на более 1 мс и такую же разрешающую способность при регистрации дискретных сигналов. Суммарная длительность полного цикла опроса, обработки и визуализации всей режимной информации о состоянии объекта на его пункте управления для обеспечения необходимой реакции оператора не превышает 1 с.

Содержание

Введение
1. Разработка автоматизированной системы управления энергохозяйством Сосногорского ЛПУМГ
1.1 Разработка информационной структуры автоматизированной системы управления энергохозяйством
1.1.1 Необходимость создания АСУ-Э
1.1.2 Структура и функции внедряемой АСУ-Э
1.1.2.1 Подсистема АСУ-ЭС
1.1.2.2 Подсистема теплоснабжения (САУ Т)
1.1.2.3 Подсистема водоснабжения (САУ В) и канализационно-очистных сооружений (САУ КОС)
1.1.3 Разработка интегрированной автоматизированной системы управления энергоснабжением для КС «Ухтинская»
1.1.3.1 Разработка верхнего уровня АСУ-Э
1.1.3.2 Построение верхнего уровня АСУ-Э на базе программно-технического комплекса MicroSCADA
1.2 Разработка автоматизированной системы управления электроснабжением КС «Ухтинская»
1.2.1 Цель создания АСУ-ЭС
1.2.2 Краткая характеристика объектов автоматизации
1.2.3 Основные функции АСУ-ЭС
1.2.4 Разработка верхнего уровня АСУ-ЭС
1.3 Разработка автоматизированной системы управления электроснабжением КС-10
1.3.1 Цель создания АСУ-ЭС
1.3.2 Автоматизация ЦРП-10 кВ
1.3.3 Автоматизация КТП-10/0,4 кВ
1.3.4 Верхний уровень АСУ-ЭС
1.4 Разработка автоматизированной системы комплексного учета энергоресурсов
1.4.1 Технический учет
1.4.2 Коммерческий учет
1.5 Разработка автоматизированной системы управления КТПСН
1.5.1 Описание автоматики работы КТПСН
1.5.2 Реализация автоматического включения резерва (АВР)
1.5.3 Система сбора данных и диспетчерского управления КТПСН
1.6 Расчет защит и проверка электрических аппаратов для ЦРП-10 кВ
2. Анализ промышленных шин для систем автоматизации
3. Расчет экономического эффекта от внедрения автоматизированной системы управления электроснабжением КС-10
4. Безопасность и экологичность проекта
4.1 Задачи в области безопасности жизнедеятельности
4.2 Потенциально опасные и вредные факторы влияющие на человека и окружающую среду
4.3 Охрана труда
4.4 Возможные чрезвычайные ситуации на компрессорной станции
4.5 Охрана окружающей среды
4.6 Расчет заземления ЦРП-10 кВ
Заключение
Библиографический список
Приложение

Работа состоит из  1 файл

1.doc

— 1.28 Мб (Скачать документ)

Адаптер 23RS61 подключается к последовательному порту связи NFK (порт связи с центральной станцией) посредством 10-штырькового ленточного кабеля.

Питание шкафа N2 АСУ-ЭС и шкафов расположенных в других ТП осуществляется от ШУОТ 220 В постоянного тока. Из установленного в шкафах оборудования питание необходимо контроллеру RTU-211, которое он получает от преобразователя PS1 и преобразователям SPA-ZC17. В таблице 1.4 представлена нагрузка от средств автоматизации для КТП.

 

Таблице 1.4 – Нагрузка от средств  автоматизации для КТП

Нагрузка

Кол.

Мощность, Вт

PS1. Источник питания =220/ =110 В

1

330

SPA-ZC17. Оптоэлектрический преобразователь =220 В

1

2,5


 

В таблице 1.5 представлен перечень элементов обозначенных на рисунке 1.3.

 

Таблица 1.5 – Перечень элементов связи контроллеров RTU-211 установленных в ТП-8, ТП-9, ТП-10, ТП-11 с АСУ-ЭС

Обозн.

Наименование

Кол.

B1–B4

Преобразователь опто-электрический SPA-ZC17

4

AS1– AS4

23RS61/RS485 адаптер последовательного порта

4

A1– A4

23CP61. Плата центрального процессора

контроллера RTU-211

4

ОРТ3

Коробка оптическая распределительная

1

каб.1– 4

Кабель интерфейсный RS-485

4

каб.5– 8

10-ти полюсный ленточный кабель  для 23RS61

4


 

1.3.4 Верхний уровень АСУ-ЭС

Диспетчерская N2 АСУ-ЭС КС-10 располагается в здании электроремонтной мастерской (ЭРМ). В диспетчерской располагаются АРМы и «Шкаф сервера АСУ-ЭС», в котором находится компьютер связи, являющийся также базовым.

Если делить АСУ-ЭС на уровни, то диспетчерская является верхним уровнем, а блоки Sepam 2000 и котроллеры RTU-211 нижним уровнем. Верхний уровень организован в виде локальной сети по стеку протоколов TCP/IP с канальным уровнем Ethernet 10 Мбит/с.

В АСУ-ЭС верхнего уровня предусматриваются следующие АРМы (рабочие станции):

  • Рабочая станция оператора управления системой электроснабжения – подключается к сети АСУ-ЭС, устанавливается в операторной здания ЭРМ, предназначена для оперативного управления системой электроснабжения.
  • Рабочая станция инженера-релейщика – подключается к сети АСУ-ЭС, устанавливается в кабинете релейщика или аппаратной, предназначена для текущего обслуживания цифровых терминалов РЗА, анализа и разбора аварий, вызова осциллограмм, программирования терминалов;
  • Рабочая станция инженера-программиста, совмещенная с сервером (в составе базового компьютера) – предназначена для общего сопровождения системы, обеспечения ее работы в нормальном режиме и технического обслуживания системы.

В качестве основного  концентратор локальной сети используется 8 портовый Switch Super Stack 3 производства фирмы 3COM. Имеет следующие характеристики:

  • обеспечивается расширенная полоса пропускания, встроенные функции управления;
  • используется программная коммутация портов;
  • производится постоянный мониторинг трафика между портами, и для освобождения ценной полосы пропускания трафик может перенаправляться на другой порт, балансировка может включаться автоматически в заданные моменты времени или при превышении определенных пороговых значений нагрузки.

Через верхний уровень  АСУ-ЭС осуществляется связь с АСУ-Э. Так как весь верхний уровень АСУ-Э построен базе локальной сети по стеку протоколов TCP/IP с канальным уровнем Ethernet 10 Мбит/с и так как ЭРМ находится на значительном расстоянии от диспетчерской АСУ-Э, то для связи используется сетевой мост с оптическим портом RAD Tiny Bridge производства фирмы RAD. Имеет следующие характеристики:

  • не применяются программные средства;
  • канальные интерфейсы: V.24, V.35, V.36, RS-530, Х.21; встроенный оптоволоконный модем;
  • скорость синхронной передачи данных по каналу глобальной связи до 10 Мбит/с и асинхронной - до 115.2 Кбит/с;
  • автоматическое обучение и адаптация.

Приходящие с нижнего  уровня оптоволоконные кабели заводятся  в распределительную коробку ОРТ1 (рисунок 1.4) и через нее связываются с преобразователями SPA-ZC22 имеющие 3 дуплексных оптических соединителей.

Преобразователи связаны  с компьютером связи по интерфейсу RS-232. В качестве логического протокола связи RTU-211 с АСУ используется стандартный протокол RP-570; у терминалов Sepam 2000 – протокол связи Modbus.

На крыше здания ЭРМ  установлена антенна GPS, для приема сигналов точного времени. Сигналы поступают на компьютер связи, через него происходит синхронизация времени с блоками Sepam 2000 и контроллерами RTU-211.

Питание шкафа сервера АСУ-ЭС и АРМов осуществляется двух вводов ШУОТ 220В переменного тока, которые заводятся на источник бесперебойного питания. В таблице 1.6 представлена нагрузка от средств автоматизации для диспетчерской N2.

На рисунке 1.4 показан шкаф сервера АСУ-ЭС. В таблице 1.7 представлен перечень элементов обозначенных на рисунке 1.4.

Общая нагрузка от средств  автоматизации входящих в состав АСУ-ЭС КС-10 составляет 7115 Вт.

 

Таблица 1.6 – Нагрузка от средств автоматизации для диспетчерской N2

Нагрузка

Кол.

Мощность, Вт

UPS. Источник бесперебойного питания ~220/~220 В

1

1000

SPA-ZC22.Оптоэлектрический преобразователь ~220 В

3

2,5

Компьютер базовый ~220 В

1

300

Рабочая станция инженера-релейщика ~220 В

1

300

Рабочая станция оператора ~220 В

1

300

Концентратор сетевой Switch Super Stack 3 ~220 В

1

33

Сервер печати ~220 В

1

300

Сетевой мост RAD TinyBridge ~220 В

2

1,5

Приемник GPS 166 Meinbere ~220 В

1

30


 

Таблица 1.7 – Перечень элементов расположенных в шкафу N1 АСУ-ЭС

Обозн.

Наименование

Кол.

А1

Базовый компьютер

1

А1-1

Плата связи с устройством  нижнего уровня DCP 386i

1

А1-2

Сетевая плата 3COM 980 TX PCI

1

А2

Концентратор сетевой на 12 портов Switch Super Stack 3

1

А3

Приемник GPS 166 Meinbere

2

А4, A5

Сетевой мост с оптическим портом RAD Tiny Bridge/U/ST13

2

А6

Источник бесперебойного питания 2000 ВА, 30 мин.

1

B1...B4

Преобразователь опто-электрический SPA-ZC22

4

ОРТ1

Коробка оптическая распределительная  на 24 порта

1

ОK1-12

Вилка дуплексная ST/PS-CC, 65,5/125

12

Каб.1– 5

Кабель интерфейсный RS-232

5

Каб.6

Кабель интерфейсный Ethernet

1

Каб.7,8

Кабель интерфейсный RAD Tiny Bridge – HUB

2

K1

Кабель интерфейсный к антенне GPS RG58

1

K2– K4

Кабель интерфейсный Ethernet

4


 

1.4 Разработка автоматизированной системы комплексного учета энергоресурсов

 

АСКУ-ЭР является подсистемой АСУ-Э. Учет энергоресурсов целесообразно разделять на технический и коммерческий не только функционально, но и физически.

 

1.4.1 Технический учет

Применительно к КС-10 к техническому учету необходимо отнести:

  • в подсистеме САУ Т учет потребляемого газа и выработанного тепла, расхода прямой, обратной и подпиточной воды, учет наработки насосов.
  • в подсистеме САУ В и КОС учет расхода воды и стоков, учет наработки насосов.
  • в подсистеме АСУ-ЭС учет расхода электроэнергии.

Для технического учета  электрической энергии используются вычисляемые значения активной и реактивной мощности на каждой отходящей линии ЦРП-10 кВ в реле Sepam 2000. Также технический учет ведется в КТП, параметры снимаются с платы 23DP61 контроллера RTU-211.

Блок Sepam позволяет получать на месте и дистанционно совокупность величин, необходимых для эксплуатации и полезных при наладке.

Ток: Измерение тока в каждой из трех фаз цепи.

Максиметр тока: Измерение наибольшего значения средних токов во всех трех фазах для определения потребляемого тока, при скачках мощности. Расчет средних токов периодически возобновляется (период осреднения может регулироваться в пределах 5, 10, 15, 30 или 60 минут).

Напряжение: Измерение трех линейных напряжений цепи.

Активная и  реактивная мощность: Измерение активной и реактивной мощности с учетом направления в симметричной и несимметричной трехфазной сети.

Максиметр активной и реактивной мощности: Измерение наибольшего среднего значения активной (или реактивной) мощности для определения потребляемой мощности при скачках нагрузки. Расчет среднего значения производится периодически (период осреднения может регулироваться в пределах 5, 10, 15, 30 или 60 минут).

Коэффициент мощности: Измерение cosj с учетом емкостного или индуктивного характера передаваемой мощности.

Частота: Измерение частоты.

Активная и  реактивная энергия: Алфавитно-цифровое устройство индикации показывает значения 4 счетчиков энергии:

  • потребленная активная энергия,
  • обратная активная энергия,
  • потребленная реактивная энергия,
  • обратная реактивная энергия.

При отключении питания  значения счетчиков сохраняются.

Токи отключения: Измерение значения тока в каждой из трех фаз и тока замыкания на землю, которые запоминаются в тот момент, когда Sepam дает команду на отключение, чтобы знать аварийный ток (анализ повреждения) и оценить степень износа выключателя (помощь при обслуживании).

Действительный  эффективный ток: Измерение действительного значения тока фазы 1 до четырехкратного значения In, с учетом:

  • основного значения тока,
  • гармоник до 21.

Запись осциллограмм аварийных режимов: Запись электрических сигналов и логической информации до и после команды на отключение коммутационного аппарата.

Платы 23DP61 контроллера RTU-211 позволяет получать на месте и дистанционно совокупность величин, необходимых для эксплуатации и полезных при наладке. На основании значений выборки вычисляются следующие величины:

  • 3-х линейных напряжений;
  • 3-х фазных напряжений;
  • 3-х фазных токов;
  • ток нейтрали;
  • напряжение нулевой последовательности;
  • активная мощность, реактивная мощность, полная мощность;
  • коэффициент мощности, частота;
  • накопленная активная мощность, потребляемая, отпущенная;
  • накопленная реактивная мощность, потребляемая, отпущенная.

 

1.4.2 Коммерческий учет

Коммерческому учету  подлежит только отпускаемая электроэнергия, так как единственный энергоресурс, за который производит коммерческий расчет с энергоснабжающей организацией ОАО «Комиэнерго».

В связи с тем, что  для надежности системы электроснабжения планируется строительство ЦРП-10 кВ, на площадке КС-10 изменяется схема электроснабжения. Все КТП-10/0,4 кВ расположенные на промпощадке будут запитываться от ЦРП-10 кВ. ЦРП будет получать питание от двух вводов главной понизительной подстанции 110/35/10 кВ от ЗРУ-10 кВ. Поэтому для коммерческого учета электроэнергии достаточно установить в ЗРУ-10 кВ ГПП два счетчика на отходящих ячейках в ЦРП.

В настоящее время находится в эксплуатации АСКУЭ на базе КТС «Энергия» позволяющая организовать расчетный и технический учет потребления электроэнергии на КС-10. Сбор данных со счетчика производится по импульсным каналам учета с подключением их к преобразователю (УСД) Е443М2. Далее данные поступают:

а) по симплексному и полудуплексному  каналам связи на плату ввода и плату ПДС соответственно, сервера КТС «Энергия»;

Информация о работе Разработка автоматизированной системы управления энергохозяйством Сосногорского ЛПУМГ