Автор работы: Пользователь скрыл имя, 06 Декабря 2010 в 20:37, отчет по практике
Полимерные вещества внедрились во все сферы человеческой деятельности - технику, здравоохранение, быт. Ежедневно мы сталкиваемся с различными пластмассами, резинами, синтетическими волокнами. Полимерные материалы обладают многими полезными свойствами: они высокоустойчивы в агрессивных средах, хорошие диэлектрики и теплоизоляторы. Некоторые полимеры обладают высокой стойкостью к низким температурам, другие - водоотталкивающими cвойствами и так далее.
Введение
Описание полистирола
Основные свойства
2.1. Физические свойства
2.2. Химические свойства
Получение
Надмолекулярная структура, конформация, конфигурация
Способы отверждения
Применение в промышленности
Заключение
Список литературы
Санкт-Петербургский государственный технологический институт
(технический
университет)
Кафедра химической Факультет IV технологии пластмасс Курс 3
Группа
474
Отчёт
по учебной практике
Студент:
__Чхортолия К.В___________________________
Руководитель:
Семенова А.Д.
2010 г.
Содержание
Введение
Описание полистирола
Основные свойства
2.1. Физические свойства
2.2. Химические свойства
Получение
Надмолекулярная структура, конформация, конфигурация
Способы отверждения
Применение в промышленности
Заключение
Список литературы
Введение
Полимерные вещества внедрились во все сферы человеческой деятельности - технику, здравоохранение, быт. Ежедневно мы сталкиваемся с различными пластмассами, резинами, синтетическими волокнами. Полимерные материалы обладают многими полезными свойствами: они высокоустойчивы в агрессивных средах, хорошие диэлектрики и теплоизоляторы. Некоторые полимеры обладают высокой стойкостью к низким температурам, другие - водоотталкивающими cвойствами и так далее.
Недостатками многих высокомолекулярных соединений является склонность к старению и, в частности, к деструкции - процессу уменьшению длины цепи и размеров молекул. Деструкция может быть вызвана механическими нагрузками, действий света, теплоты, воды и особенно кислорода и озона. Процесс уменьшения цепи идёт за счёт разрушения связей С-С и образования радикалов, которые в свою очередь, способствуют дальнейшему разрушению полимерных молекул.
Полимерные молекулы представляют собой обширный класс соединений, основными отличительными характеристиками которых являются большая молекулярная масса и высокая конформационная гибкость цепи. Можно с уверенностью сказать, что и все характеристические свойства таких молекул, а также связанные с этими свойствами возможности их применения обусловлены вышеуказанными особенностями.
Именно
благодаря своим различным свойствам
полимеры нашли такое обширное приминение
во всех облостях человеческой деятельности.
И в данной работе мною будет расотрен
полистерол, как один из полимеров встречаюшися
в нашей повседневной жизни.
1.
Описание полистирола
Полистирол - термопластичный аморфный полимер с формулой
[-СН2-С(С6Н5)Н-]n
Структурная формула:
Полистирол - прозрачное стеклообразное вещество, молекулярная масса 30-500 тыс., плотность 1,06 г/см3 (20 °С), температура стеклования 93°С.
Для полистирола характерно коптящее пламя с цветочным сладковатым запахом (Этот запах корицы обычно можно обнаружить, уколов исследуемый предмет раскаленной иглой). Если к тому же предмет падает на пол с металлическим звоном то, скорее всего полистирол [8].
Это твердое, упругое, бесцветное вещество. Фенильные группы препятствуют упорядоченному расположению макромолекул и формированию кристаллических образований. Это жесткий, аморфный полимер с невысокой механической прочностью при растяжении и изгибе. Полистирол имеет низкую плотность, низкую термическую стойкость, обладает отличными диэлектрическими свойствами и весьма низкой прочностью при ударе. Он легко деформируется при относительно невысоких температурах (80°C). При контакте с жирами выделяет мономер стирола. Для улучшения свойств полистирола его модифицируют различными сополимерами и подвергают сшиванию.
Полистирол - дешёвый крупнотоннажный термопласт; характеризуется высокой твёрдостью, хорошими диэлектрическими свойствами, влагостойкостью, легко окрашивается и формуется, химически стоек, растворяется в ароматически и хлорированных алифатических углеводородах. Лучшими эксплуатационными свойствами обладают различные сополимеры стирола. Так, повышения теплостойкости и прочности при растяжении (на ~ 60 процентов) достигают сополимеризацией стирола с акрилонитрилом или a-метилстиролом, повышения прочности и ударной вязкости (от 5-10 до 50-100 кДж/м2) - получением привитых сополимеров стирола с 5-10% каучука, например бутадиенового (ударопрочный полистирол), а также тройных сополимеров акрилонитрила, бутадиена и стирола (т. н. АБС-пластик). Заменой акрилонитрила на метилметакрилат синтезируют прозрачные тройные сополимеры [5].
2. Основные свойства
2.1.
Физические свойства
Стирол горюч и взрывоопасен. Пределы взрывоопасности в смеси с воздухом при комнатной температуре от 1,1 до 6,1 объемн. %. Допустимая концентрация паров в воздухе не выше 0,5 мг/м систематическое вдыхание паров стирола в концентрации выше допустимой приводит к хроническому заболеванию печени.
Важнейшие физические свойства стирола и α-метилстирола приведены ниже:
Таблица 1 - Физические свойства стирола и α-метилстирола
Стирол | α-метилстирол | |
Структурная формула | ||
Молекулярный вес | 104,14 | 119,14 |
Т. кипения при 760 мм рт. ст., °C | 145,2 | 165,38 |
Градиент кипения, °C/мм рт. ст. | 0,049 | 0,052 |
Т. замерзания при 760 мм рт.ст., °C | -30,628 | - |
Плотность при 20 °C, г/см3 | 0,90600 | 0,88 (25 °C) |
Дипольный момент, Кл×м | 0,37×10-30 | - |
Удельная теплоемкость при 20 °C, кДж/(кг×К) | 1,735 | 2,04 |
Вязкость при 20 °C, Па×с | 0,078 | 0,080 |
Поверхностное натяжение, Н/м | 0,0322 (20 °C) | 0,0317 (25 °C) |
Теплота испарения при 20 °C, кДж/моль | 44,6 | 40,4 |
Термический коэффициент объемного расширения при 25 °C, 1/°C | 9,719×10-4 | 11×10-4 |
Критическая температура, °C | 373 | 386 |
Критическое давление, МПа | 3,93 | 4,84 |
Коэффициент преломления | 1,54682 | 1,5386 |
Таблица 2 - Зависимость температуры кипения стирола от давления
Т, кип., °C | 32,40 | 45,60 | 53,86 | 60,05 | 65,45 | 69,68 | 76,60 | 82,19 |
Р, мм рт.ст. | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
Зависимость ряда физических свойств стирола от температуры дается эмпирическими уравнениями:
для давления паров (P-в мм рт. ст., Т-в °C):
для плотности:
для поверхностного натяжения (30-90°C):
Температура, °C | Плотность, Мг/см3 | Вязкость, Па×с | Удельная теплоемкость, кДж/(кг×К) | Давление, мм рт.ст. | Теплота испарения, кДж/моль |
0
10 20 25 30 40 50 60 70 80 90 100 110 120 130 140 150 |
0,9238
0,9150 0,9063 0,9019 0,8975 0,8887 0,8800 0,8712 0,8624 0,8537 0,8449 0,8361 0,8274 0,8186 0,8098 0,8011 0,7925 |
9,76
8,77 7,81 7,30 6,94 6,21 5,52 4,90 4,38 3,92 3,48 3,12 2,78 2,48 2,21 1,96 1,75 |
1,634
1,660 1,686 1,700 1,719 1,748 1,781 1,809 1,843 1,884 1,927 1,980 2,042 2,110 2,165 2,240 2,320 |
1,3
2,6 4,9 6,6 8,8 15,2 25,0 39,8 61,0 92,0 134 196 270 371 500 665 880 |
44,6
44,2 43,8 43,6 43,3 42,9 42,5 42,0 41,6 41,2 40,7 40,2 39,7 39,3 38,7 38,2 37,6 |
Распространенные в технике три основных процесса полимеризации стирола приводят к получению продукта, разного внешнего вида. При блочной полимеризации процесс ведут путем постепенного нагревания жидкого мономера. Температурный режим подбирают таким образом, чтобы полимеризующаяся масса все время находилась в вязкотекучем состоянии. Это означает, что в конце процесса, когда конверсия мономера достигает значения, близкого к предельному, температура расплавленного полистирола должна быть порядка 200-230 °С. Массу продавливают через фильеры путем экструзии и в горячем или холодном состоянии разрезают на гранулы. Путем повторной экструзии блочный полистирол окрашивают и используют для дальнейшей переработки в изделия.
Таблица
3 -Зависимость некоторых свойств стирола
от температуры
Продукты,
получающиеся в результате суспензионной
и эмульсионной полимеризации, представляют
собой шарообразные частицы, различающиеся
размером. Суспензионный полистирол крупнее
- средний размер частиц - 4×5 мм. Эмульсионный
продукт - «бисер» - имеет средний размер
частиц
1-10 мкм [3].
Таблица 4 - Основные физические свойства полистирола
Плотность при 20 °C, г/см3 | 1,04-1, 965 (аморфного)
1,12 (кристаллического) |
Удельная теплоемкость при 20 °C, кДж/(кг×К) | 1,258 (20 °C) 1,84 (100 °C) |
Термический коэффициент объемного расширения при 25 °C, 1/°C | (1,7-2,1) ×10-4
при Т<Тст
(5,1-6,0) ×10-4 при Т>Тст |
Коэффициент теплопроводности, Вт/(м×К) | 0,1165 (50 °C ) 0,1276 (100 °C) |
H сгорания, кДж/моль | - 434×10-3 |
H растворения, кДж/моль | - 3,59 |
H плавления кристаллов, кДж/моль | 8,373 |
Вязкость расплава, Па×с при 217 °C | K=13,40
- 2,65 ×10-4 при Т<Тст - 6,05×10-4 при Т>Тст |
Коэффициент преломления nD (в блоке) | 1,59-1,60 |
Коэффициент Пуассона | 0,325 |
Диэлектрическая проницаемость | 2,49-2,55 |