Технология общественного питания

Автор работы: Пользователь скрыл имя, 30 Января 2013 в 17:55, контрольная работа

Описание

Изменения, протекающие в рыбе и нерыбных морепродуктах.

Работа состоит из  1 файл

Технология общ.питания 1 к.р. вар.7.doc

— 361.00 Кб (Скачать документ)

В составе экстрактивных  веществ мяса рыб содержатся значительные количества азотистых оснований. Они подразделяются на летучие и триметиламмониевые. Среди летучих оснований преобладают моно-, ди- и триметиламин и аммиак. В свежевыловлен- ной морской рыбе триметиламина содержится 2...2,5 мг/100 г, в пресноводной — 0,5 мг/100 г. Аммиака в морской рыбе содержится 3...9 мг/100 г, в пресноводной — до 0,05 мг/100 г. При хранении охлажденной рыбы под действием микроорганизмов количество летучих оснований в мясе рыб может возрастать. Среди триметиламмониевых оснований преобладают триметиламин- оксид и бетаины, в морской рыбе они содержатся в количествах соответственно 100...1080 и 100... 150 мг/100 г.

При варке на переход  экстрактивных и минеральных  веществ из рыбы в бульон оказывают влияние не только денатурация мышечных белков и их постденатурационные изменения, но и диффузия. Количество растворимых веществ, переходящих из рыбы в бульон в результате диффузии, зависит от гидромодуля. В связи с этим порционные куски рыбы ценных пород обычно готовят припусканием с добавлением жидкости в количестве, не превышающем 30 % к массе рыбы. Образующийся при этом бульон используют для приготовления соусов.

В рыбных бульонах содержится в среднем 28 % экстрактивных и 24 % минеральных веществ, 48 % глютина. В бульонах, приготовляемых из рыбных отходов (голов, плавников, костей, кожи), содержание экстрактивных веществ не превышает 4 %, минеральных — 11%. Остальная часть сухого остатка бульона состоит из глютина (74 %) и эмульгированного жира. Существенные различия в составе бульонов из рыбы и рыбных отходов объясняются тем, что экстрактивные и минеральные вещества сосредоточены в основном в мышечных волокнах. Минеральные вещества костей представлены нерастворимыми в воде фосфатами и карбонатами кальция.

По качественному составу  экстрактивных азотистых веществ  рыбные бульоны существенно отличаются от мясных. В рыбных бульонах преобладают  циклические (гистидин, триптофан, фенилаланин) и серосодержащие (цистин, цистеин, метионин, таурин) свободные аминокислоты. В бульонах из океанических рыб содержится метилгуанидин — сильное основание, в больших концентрациях оказывающее токсическое действие на живые организмы. К особенностям рыбных бульонов относится содержание в них значительных количеств аминов, среди которых важная роль принадлежит метиламинам и гистамину. Гигиеническими требованиями к качеству и безопасности продовольственного сырья и пищевых продуктов установлен предельно допустимый уровень содержания гистамина в мясе некоторых видов рыб (тунец, скумбрия, лосось, сельдь), который составляет 100 мг/кг.

Содержащийся в мясе рыб креатин при тепловой кулинарной обработке частично превращается в  креатинин, который вступает в химические реакции с продуктами карбониламинных реакций, свободными аминокислотами и сахарами с образованием гетероциклических ароматических аминов, обладающих сильным мутагенным и канцерогенным действием на живые организмы. В мясе беспозвоночных, не содержащем креатина, при тепловой кулинарной обработке гетероциклические ароматические амины не образуются.

Общие потери массы при  тепловой кулинарной обработке рыбы находятся в пределах 18...20 %, что вдвое меньше потерь массы мяса крупного рогатого скота. При жарке рыбы потери обусловлены обезвоживанием продукта, а при жарке жирной рыбы дополнительные потери могут возникать в результате выплавления и выхода в окружающую среду некоторого количества жира. При варке рыбы определенную долю в общих потерях составляют экстрактивные, минеральные вещества и белки. Как при варке, так и при жарке рыбы 90...95 % общих потерь массы составляют потери воды, отделяемой денатурирующими мышечными белками.

Динамика выделения  воды мясом крупного рогатого скота  и рыбы при одних и тех же параметрах тепловой кулинарной обработки выглядит по-разному. Из графиков, представленных на рис. 12.2, видно, что в интервале температур 45...75 "С обезвоживание говядины и мяса рыбы идет интенсивно, причем в говядине — более быстрыми темпами. При температурах выше 75 "С потери рыбой воды прекращаются, в то время как говядина теряет воду вплоть до достижения температуры 90...95 "С, что указывает на более низкие температурные границы денатурации и свертывания белков рыбы по сравнению с мышечными белками теплокровных животных.

Сравнительно небольшие потери воды мясом рыб при тепловой кулинарной обработке объясняются особенностями его химического состава и гистологического строения: высоким содержанием белков актомиозинового комплекса в миофибриллах мышечных волокон; простым строением перимизия мышц; сравнительно низкой температурой денатурации и деструкции коллагена внутримышечной соединительной ткани. Тепловая денатурация мышечных белков сопровождается сравнительно слабой их дегидратацией. Вода, отделяемая белковыми гелями мышечных волокон и поступающая в пространство между пучками мышечных волокон, слабо выпрессовывается в окружающее пространство из-за незначительной деформации внутримышечных соединительнотканных образований мышц рыбы и сравнительно быстрой желатинизации коллагена. В результате этого мясо рыб при тепловой обработке теряет не более 25 % содержащейся в ней воды.

При варке, жарке и  при СВЧ-нагреве потери массы  рыбы практически одинаковые. При  жарке рыбы ИК-лучами потери массы  снижаются на 4...5 % благодаря повышенной проникающей способности инфракрасного излучения и сокращению продолжительности тепловой обработки.

Исследования белков мышечной ткани сырой и подвергнутой тепловой кулинарной обработке рыбы показало, что изменения направлены на значительное уменьшение растворимости мио- фибриллярных белков по сравнению с белками саркоплазмы, возрастание в 3 ...3,5 раза количества денатурированных белков и растворимых азотистых веществ, в том числе белковой природы, в связи с переходом коллагена в глютин.

Автолиз, протекающий в мясе рыб под действием тканевых ферментов при холодильном хранении, способствует дополнительному накоплению азотистых оснований и других соединений, характерных для мяса рыб. В результате этого специфические запах и вкус рыбных блюд усиливаются. Интенсивнее эти процессы протекают при хранении морской рыбы.

Липиды рыб обладают высокой биологической эффективностью. Они сосредоточены в мясе, икре и молоках, в печени некоторых видов рыб. По содержанию липидов в съедобном мясе рыб подразделяют на жирные, средней жирности и тощие. К жирным рыбам (содержание жира 12...30 %) относятся миноги, угорь речной, палтус черный, скумбрия тихоокеанская, осетровые, угольная рыба; к рыбам средней жирности (содержание жира

2..         .8 %) — карп, лещ, сазан, ставрида и др.; к тощим (содержание жира до 2 %) — судак, щука, треска, пикша, сайда, минтай, зубатка, макрурус, навага и др.

В состав липидов рыб  входят триглицериды, свободные жирные кислоты, моно- и диглицериды, фосфолипиды, а также сте- рины, витамины, каротиноиды.

Для жира рыб характерны сравнительно низкая температура плавления (12...28 °С) и высокое содержание ненасыщенных жирных кислот (76...87 %) очень сложного состава. В состав триглицеридов межмышечного и подкожного жира рыб входят 17 ненасыщенных жирных кислот, различающихся как длиной алифатической цепи, так и числом двойных связей (от одной до шести). Высокая биологическая эффективность липидов рыб связана с наличием в их составе линолевой (18 : 2) и арахидоно- вой (20 : 4) жирных кислот, которые не синтезируются в организме человека и должны поступать с пищей. Из двух названных жирных кислот незаменимой является линолевая кислота. Источником поступления ее в организм человека служат животные жиры и растительные масла. Присутствие в липидах мяса рыб высоконенасыщенных жирных кислот, их окисление с образованием пероксидов, гидропероксидов, оксикислот и других продуктов окисления являются причиной снижения пищевой ценности готовой продукции. Особенно лабильны жирные кислоты, имеющие 4, 5, 6 двойных связей. Их содержание в жире пресноводных рыб составляет 6...30 %, морских — 13...57 % общей массы жирных кислот.

В мышечной ткани рыб  содержатся очень активные гидролитические ферменты, поэтому скорость автолиза высокая. Липаза рыб сохраняет активность в мороженой мышечной ткани и инактивируется только при -22 °С. При хранении рыбы может происходить гидролиз липидов с одновременным интенсивным окислением продуктов гидролиза кислородом воздуха. Особенно интенсивно гидролизуются и окисляются фосфолипиды.

Продукты гидролиза  и окисления липидов имеют  неприятные вкус и запах, которые сохраняются в готовых кулинарных изделиях. Для снижения их накопления применяют глазирование замороженной рыбы, упаковку в газовлагонепроницаемые материалы и другие способы.

Физико-химические изменения  экстрактивных веществ и липидов рыб — одна из причин того, что пищевая ценность блюд, приготовляемых из рыбы длительного хранения, обычно значительно ниже, чем блюд, приготовляемых из живой или охлажденной рыбы. Эти различия особенно заметны при использовании морской рыбы, что необходимо учитывать в технологическом процессе: увеличивать закладку специй и ароматической зелени и кореньев при варке и припускании рыбы, добавлять уксус, рассол, подбирать соответствующие соусы и гарниры.

НЕРЫБНЫЕ МОРЕПРОДУКТЫ

Мясо большинства беспозвоночных (моллюсков и ракообразных) в приготовленном виде более нежное по сравнению с мясом рыб, что объясняется их малоподвижным образом жизни. Исключение составляют кальмары, имеющие мускулистое тело (мантию) и мигрирующие на большие расстояния. Тело других ракообразных заключено в прочную защитную оболочку (раковину, панцирь), мускулатура развита слабо.

По химическому составу  мясо беспозвоночных существенно отличается от мяса рыб (табл. 12.2).

Для мяса беспозвоночных характерны сравнительно высокое содержание минеральных веществ, низкое содержание липидов и значительные колебания  содержания азотистых веществ. В  составе небелковых азотистых веществ отсутствуют креатин и кре- атинин, мало содержится пуриновых оснований, дипептидов, среди свободных аминокислот преобладают заменимые, много глутаминовой аминокислоты и мало циклических и серосодержащих аминокислот. Азотистые основания в значительных количествах содержатся в мясе ракообразных и кальмаров. Гистамин в съедобном мясе беспозвоночных содержится в пределах, характерных для мяса пресноводных рыб.

В мясе беспозвоночных содержится значительное количество гликогена (2... 10 %), чем объясняется его сладковатый  вкус в приготовленном виде. Липидный компонент включает триглицериды, фосфолипиды, холестерин и стеролы. Жирнокислотный состав липидов отличается высоким содержанием ненасыщен- ных кислот, в том числе арахидоновой. В то же время в составе липидов мяса беспозвоночных содержится мало высоконенасыщенных жирных кислот с 5, 6 двойными связями, что объясняет хорошую стабильность беспозвоночных при длительном холодильном хранении.

Таким образом, по химическому  составу азотистых экстрактивных веществ и липидов мясо беспозвоночных ближе к мясу пресноводных рыб и представляет большую ценность для диетического питания и питания детей всех возрастов.

Морская капуста представляет собой слоевища морских бурых  водорослей рода ламинарий шириной  до 0,5 м, длиной

3..   . 5 м. Добывают морскую капусту в прибрежных водах Тихого океана для пищевых целей и получения солей альгиновой кислоты и маннита. В расчете на сухую массу морская капуста содержит 5...20 % белков, 1...3 % липидов, 6... 12 % пищевых углеводов, 0,1...0,6 % йода и другие микроэлементы. На предприятия общественного питания морская капуста поступает в замороженном или сушеном виде, ее вымачивают в холодной воде: мороженую около 1 ч, сушеную 12 ч. Варят морскую капусту 2 ч при гидромодуле 1:2, при этом в воду переходит часть Сахаров и минеральных веществ. В готовом продукте сохраняется достаточное количество пищевых веществ, наибольшую ценность из которых представляют минеральные вещества, особенно йод, а также витамины группы В, каротин и витамин С.

Таким образом, рыба и  нерыбные морепродукты играют большую роль в питании, являясь поставщиками полноценных белков, ненасыщенных жирных кислот, фосфолипидов, витаминов, макро- и микроэлементов. Мясо рыб и нерыбных морепродуктов содержит фтор, йод, бром, мышьяк и другие микроэлементы, дефицит которых часто наблюдается в растительных продуктах.

 

 

 

Задача №1. Оливковое масло содержит 80% по массе  триглицерида одноосновной ненасыщенной карбоновой кислоты с одной двойной связью. Выведите формулу этого триглицерида, если известно, что 1,105 кг оливкового масла содержит 1 моль этого триглицерида.

 

 

 

 

 

Задача №2. Сало прогоркает при температуре 4оС в 30 раз медленнее, чем при температуре 25оС. Определите энергию активации процесса прогоркания сала.

 

 

 

 

 

 

Список использованной литературы :

 

       1. Ратушный А.С. Изменения белков и других азотистых веществ при кулинарной обработке продуктов / А.С. Ратушный, Е.В. Литвинова, Т.А. Иванникова – М.: Издательский центр Российского химико-технологического университета имени Д.И. Менделеева, 2000.


Информация о работе Технология общественного питания