Автор работы: Пользователь скрыл имя, 17 Октября 2012 в 19:50, лекция
Биотехнология как наука является важнейшим разделом современной биологии, которая, как и физика, стала в конце XX в. одним из ведущих приоритетов в мировой науке и экономике.
Современная биотехнология — это наука о генно-инженерных и клеточных методах и технологиях создания и использования генетически трансформированных биологических объектов для интенсификации производства или получения новых видов продуктов различного назначения.
Биотехнология как наука является важнейшим разделом современной биологии, которая, как и физика, стала в конце XX в. одним из ведущих приоритетов в мировой науке и экономике.
Современная биотехнология — это наука о генно-инженерных и клеточных методах и технологиях создания и использования генетически трансформированных биологических объектов для интенсификации производства или получения новых видов продуктов различного назначения.
В рамках изучаемого курса можно выделить 3 основных части:
1. Промышленная биотехнология, где рассматриваются общие принципы осуществления биотехнологических процессов, происходит знакомство с основными объектами и сферами применения биотехнологии, рядом крупномасштабных промышленных биотехнологических производств, использующих микроорганизмы.
2. Клеточная инженерия. Основная цель этого раздела – знакомство с методами ведения культур клеток и практическим использованием этих объектов. В рамках этого раздела выделяют культивирование растительных клеток и методы культивирования животных клеток, так как подходы к культивированию этих объектов различаются в силу их принципиальных биологических различий. Клеточная биотехнология обеспечила ускоренное получение новых важных форм и линий растений и животных, используемых в селекции на устойчивость, продуктивность и качество; размножение ценных генотипов, получение ценных биологических препаратов пищевого, кормового и медицинского назначения
3. Генная инженерия. Высшим достижением современной биотехнологии является генетическая трансформация, перенос чужеродных генов и других материальных носителей наследственности в клетки растений, животных и микроорганизмов, получение трансгенных организмов с новыми или усиленными свойствами и признаками. По своим целям и возможностям в перспективе это направление является стратегическим. Оно позволяет решать коренные задачи селекции биологических объектов на устойчивость, высокую продуктивность и качество продукции при оздоровлении экологической обстановки во всех видах производств.
Современная биотехнология тесно стыкуется с рядом научных дисциплин, осуществляя их практическое применение или же являясь их основным инструментом (рис. 1).
Рис. 1. Связь биотехнологии с другими науками ( по В.И.Кефели, 1989)
В молекулярной биологии
использование
Микробиологическая
Некоторые белки и вторичные метаболиты могут быть получены только путем культивирования клеток эукариот. Растительные клетки могут служить источником ряда соединений - атропин, никотин, алкалоиды, сапонины и др. Клетки животных и человека также продуцируют ряд биологически активным соединений. Например, клетки гипофиза - липотропин, стимулятор расщепления жиров, и соматотропин - гормон, регулирующий рост.
Созданы перевиваемые культуры клеток животных, продуцирующие моноклональные антитела, широко применяемые для диагностики заболеваний. В биохимии, микробиологии, цитологии несомненный интерес вызывают методы иммобилизации как ферментов, так и целых клеток микроорганизмов, растений и животных. В ветеринарии широко используются такие биотехнологические методы, как культура клеток и зародышей, овогенез in vitro, искусственное оплодотворение. Все это свидетельствует о том, что биотехнология станет источником не только новых продуктов питания и медицинских препаратов, но и получения энергии и новых химических веществ, а также организмов с заданными свойствами.
Условно можно выделить следующие основные направления биотехнологии: биотехнология пищевых продуктов, препаратов для сельского хозяйства, препаратов и продуктов для промышленного и бытового использования, лекарственных препаратов, средств диагностики и реактивов, биотехнология также включает выщелачивание и концентрирование металлов, защиту окружающей среды от загрязнения, деградацию токсических отходов и увеличение добычи нефти.
древнейшим и наиболее эффективным методом превращения биомассы в энергию является получение биогаза (метана).
Метановое «брожение», или биометаногенез, - давно известный процесс превращения биомассы в энергию. Он был открыт в 1776 г. Вольтой, который установил наличие метана в болотном газе. Биогаз, получающийся в ходе этого процесса, представляет собой смесь из 65% метана, 30% углекислого газа, 1% сероводорода (Н2S) и незначительных количеств азота, кислорода, водорода и закиси углерода. Болотный газ дает пламя синего цвета и не имеет запаха. Его бездымное горение причиняет гораздо меньше неудобств людям по сравнению со сгоранием дров, навоза жвачных животных или кухонных отбросов. Энергия, заключенная в 28 м3 биогаза, эквивалентна энергии 16,8 м3 природного газа, 20,8 л нефти или 18,4 л дизельного топлива.
Биометаногенез осуществляется в три этапа: растворение и гидролиз органических соединений, ацидогенез и метаногенез.
В процессе биометаногенеза участвуют три группы бактерий. Первые превращают сложные органические субстраты в масляную, пропионовую и молочную кислоты; вторые превращают эти органические кислоты в уксусную кислоту, водород и углекислый газ, а затем метанообразующие бактерии восстанавливают углекислый газ в метан с поглощением водорода, который в противном случае может ингибировать уксуснокислые бактерии. В 1967 г. Брайант и др. установили, что уксуснокислые и метанообразующие микроорганизмы образуют симбиоз, который ранее считался одним микробом и назывался Methanobacillus omelianskii.
Для всех метанобактерий характерна
способность к росту в
Метановое «брожение» происходит в водонепроницаемых цилиндрических цистернах (дайджестерах) с боковым отверстием, через которое вводится ферментируемый материал. Над дайджестером находится стальной цилиндрический контейнер, который используется для сбора газа; нависая над бродящей смесью в виде купола, контейнер препятствует проникновению внутрь воздуха, так как весь процесс должен происходить в строго анаэробных условиях. Как правило, в газовом куполе имеется трубка для отвода биогаза. Дайджестеры изготовляют из глиняных кирпичей, бетона или стали. Купол для сбора газа может быть изготовлен из нейлона; в этом случае его легко прикреплять к дайджестеру, изготовленному из твердого пластического материала. Газ надувает нейлоновый мешок, который обычно соединен с компрессором для повышения давления газа.
В тех случаях, когда используются отходы домашнего хозяйства или жидкий навоз, соотношение между твердыми компонентами и водой должно составлять 1:1 (100 кг отходов на 100 кг воды), что соответствует общей концентрации твердых веществ, составляющей 8—11% по весу. Смесь сбраживаемых материалов обычно засевают ацетогенными и метаногенными бактериями или отстоем из другого дайджестера. Низкий рН подавляет рост метаногенных бактерий и снижает выход биогаза; такой же эффект вызывает перегрузка дайджестера. Против закисления используют известь. Оптимальное «переваривание» происходит в условиях, близких к нейтральным (рН 6,0—8,0). Максимальная температура процесса зависит от мезофильности или термофильности микроорганизмов (30—40° С или 50—60° С); резкие изменения температуры нежелательны.
Обычно дайджестеры загружают в землю, чтобы использовать изоляционные свойства почвы. В странах с холодным климатом их нагревают при помощи устройств, которые применяют при компостировании сельскохозяйственных отходов. С точки зрения питательных потребностей бактерий избыток азота (например в случае жидкого навоза) способствует накоплению аммиака, который подавляет рост бактерий. Для оптимальной переработки соотношение C/N должно быть порядка 30:1 (по весу). Это соотношение можно изменять, смешивая субстраты, богатые азотом, с субстратами, богатыми углеродом. Так, C/N навоза можно изменить добавлением соломы или жома сахарного тростника.
Отходы пищевой промышленности и сельскохозяйственного производства характеризуются высоким содержанием углерода (в случае перегонки свеклы на 1 литр отходов приходится до 50 граммов углерода), поэтому они лучше всего подходят для метанового «брожения», тем более, что некоторые из них получаются при температуре, наиболее благоприятной для этого процесса.
Обычно длительность переработки навоза крупного рогатого скота составляет две—четыре недели. Двухнедельной переработки при температуре 35° С достаточно, чтобы убить все патогенные энтеробактерии и энтеровирусы, а также 90% популяции Ascaris lumbricoides и Ancylostoma.
Еще в 1979 году конференция ООН по науке и технике для развивающихся стран и эксперты "Экономической и социальной комиссии по странам Азии и Тихого океана" подчеркивали достоинства интегрированных сельскохозяйственных программ, использующих биогаз. Надо отметить, что 38% от 95-миллионного поголовья крупного рогатого скота в мире, 72% остатков сахарного тростника и 95% отходов бананов, кофе и цитрусовых приходятся на долю стран Африки, Латинской Америки, Азии и Ближнего Востока. Не удивительно, что в этих регионах сосредоточены огромные количества сырья для метанового «брожения». Следствием этого явился поворот некоторых стран с сельскохозяйственно ориентированной экономикой на биоэнергетику.
В России сейчас производством и внедрением установок для получения биогаза занимается НТЦ «Агроферммашпроект», который предлагает запатентованные в России современные энергосберегающие технологии и оборудование для переработки органических отходов животноводства, полеводства в эффективное экологически чистое удобрение и энергию
Биотехнология в состоянии внести крупный вклад в решение проблем энергетики посредством производства достаточно дешевого биосинтетического этанола, который кроме того является и важным сырьем для микробиологической промышленности при получении пищевых и кормовых белков, а также белково-липидных кормовых препаратов. Крупнейшие мировые производители спирта (по данным на 2000г.): Бразилия – 10,6 млрд.л; США – 6,5 млрд.л; Китай – 3 млрд.л; Индия – 1,7 млрд.л; Россия – 1,3 млрд.л.
Негидрированный этанол– используется в качестве добавки к бензину в пропорции 20-24% и не требует изменений в двигателе; гидрированный – используется в качестве топлива и требует специального двигателя, работающего на спирте. Бразилия является первой страной, начавшей использовать негидрированный спирт в качестве добавки к топливу.
Источником углеводородов также могут служить водоросли. У широко распространенной зеленой водоросли Botryococcus braunii (обитающей в пресной и солоноватой воде умеренных и тропических зон) углеводороды в зависимости от условий роста и разновидностей могут составлять до 75% сухой массы. Они накапливаются внутри клеток, и водоросли, в которых их много, плавают на поверхности. После сбора водорослей эти углеводороды легко отделить экстракцией каким-нибудь растворителем или методом деструктивной отгонки. Таким путем может быть получено вещество, аналогичное дизельному топливу и керосину.
Для определения перспективности использования B.braunii необходимо провести следующие исследования:
- определить условия,
- выяснить, можно ли добиться скорости роста B.braunii, сопоставимой с известной для других водорослей;
- разработать соответствующие методы выращивания, сбора и переработки;
- оценить применимость
Клеточные мембраны некоторых галобактерий также рассматриваются как альтернативные источники получения энергии. Были получены фотогальванические элементы на основе бактериородопсина, генерировавшие электрический ток. Кроме того, отличным экологически чистым и возобновляемым источником энергии является фотоводород, который получают с использованием мембран хлоропластов.
Методами биотехнологии отходы могут быть переработаны в полезные или безвредные продукты.
Бытовые отходы делятся на 2 группы: твердые отходы и сточные воды.
Твердые бытовые отходы состоят из целлюлозосодержащих материалов (до 40 % бумаги, 2.5% дерева, 8% текстиля) и пищевых отходов (40%). Наиболее экономична и радикальна переработка их метановым брожением, в результате образуется легко транспортируемое топливо - метан.