Деформация

Автор работы: Пользователь скрыл имя, 05 Октября 2011 в 22:04, реферат

Описание

Деформации возникают из-за различных движений тела. Если бы все части тела двигались одинаково, то тело всегда сохраняло бы свою первоначальную форму и размеры, т.е. оставалось бы недеформированным.

Содержание

Понятие о деформации.
Виды деформации.
Силы упругости.
Абсолютное и относительное удлинения.
Закон Гука.
Механическое напряжение.
Диаграмма растяжения.
Пластичность и хрупкость.

Работа состоит из  1 файл

реферат.физика.doc

— 230.50 Кб (Скачать документ)

Рис. 9

или
,

где ε – относительное удлинение тела (%); Δl – абсолютное удлинение тела (м); l0 –начальная длина тела (м).

Закон Гука

Связь между силой  упругости и упругой деформацией тела (при малых деформациях) была экспериментально установлена современником Ньютона английским физиком Гуком. Математическое выражение закона Гука для деформации одностороннего растяжения (сжатия) имеет вид

, (1)

где Fупр – модуль силы упругости, возникающей в теле при деформации (Н); Δl – абсолютное удлинение тела (м).

Коэффициент k называется жесткостью тела – коэффициент пропорциональности между деформирующей силой и деформацией в законе Гука.

Жесткость пружины численно равна силе, которую надо приложить к упруго деформируемому образцу, чтобы вызвать его единичную деформацию.

В системе СИ жесткость  измеряется в ньютонах на метр (Н/м):

.

Коэффициент жесткости  зависит от формы и размеров тела, а также от материала.

Закон Гука для одностороннего растяжения (сжатия) формулируют так:

сила  упругости, возникающая  при деформации тела, пропорциональна  удлинению этого  тела.

Механическое напряжение.

Состояние упруго деформированного тела характеризуют величиной  σ, называемой механическим напряжением.

Механическое напряжение σ равно отношению модуля силы упругости Fупр к площади поперечного сечения тела S:

.

Измеряется механическое напряжение в Па: [σ] = Н/м2 = Па.

Наблюдения показывают, что при небольших деформациях механическое напряжение σ пропорционально относительному удлинению ε:

. (2)

Эта формула является одним из видов записи закона Гука для одностороннего растяжения (сжатия). В этой формуле относительное  удлинение взято по модулю, так  как оно может быть и положительным  и отрицательным.

Коэффициент пропорциональности Е в законе Гука называется модулем упругости (модулем Юнга). Экспериментально установлено, что

модуль  Юнга численно равен такому механическому напряжению, которое должно было бы возникнуть в теле при увеличении его длины в 2 раза.

Докажем это: Из закона Гука получаем, что . Если модуль Юнга E численно равен механическому напряжению σ, то . Тогда .

Измеряется модуль Юнга в Па: [E] = Па/1 = Па.

Практически любое тело (кроме резины) при упругой деформации не может удвоить свою длину: значительно раньше оно разорвется. Чем больше модуль упругости Е, тем меньше деформируется стержень при прочих равных условиях (l0, S, F). Таким образом, модуль Юнга характеризует сопротивляемость материала упругой деформации растяжения или сжатия.

Закон Гука, записанный в форме (2), легко привести к виду (1). Действительно, подставив в (2) и , получим:

или
,

где .

Диаграмма растяжения

Для исследования деформации растяжения стержень из исследуемого материала при помощи специальных устройств (например, с помощью гидравлического пресса) подвергают растяжению и измеряют удлинение образца и возникающее в нем напряжение. По результатам опытов вычерчивают график зависимости напряжения σ от относительного удлинения ε. Этот график называют диаграммой растяжения (рис. 10).

Рис. 10

Многочисленные опыты  показывают, что при малых деформациях  напряжение σ прямо пропорционально относительному удлинению ε (участок ОА диаграммы) – выполняется закон Гука.

Эксперимент показывает, что малые деформации полностью  исчезают после снятия нагрузки (наблюдается  упругая деформация). При малых  деформациях выполняется закон  Гука. Максимальное напряжение, при котором еще выполняется закон Гука, называется пределом пропорциональности σп. Он соответствует точки А диаграммы.

Если продолжать увеличивать  нагрузку при растяжении и превзойти  предел пропорциональности, то деформация становится нелинейной (линия ABCDEK). Тем не менее при небольших нелинейных деформациях после снятия нагрузки форма и размеры тела практически восстанавливаются (участок АВ графика). Максимальное напряжение, при котором еще не возникают заметные остаточные деформации, называется пределом упругости σуп. Он соответствует точке В диаграммы. Предел упругости превышает предел пропорциональности не более чем на 0,33%. В большинстве случаев их можно считать равными.

Если внешняя нагрузка такова, что в теле возникают напряжения, превышающие предел упругости, то характер деформации меняется (участок BCDEK). После снятия нагрузки образец не принимает прежние размеры, а остается деформированным, хотя и с меньшим удлинением, чем при нагрузке (пластическая деформация).

За пределом упругости  при некотором значении напряжения, соответствующем точке С диаграммы, удлинение возрастает практически без увеличения нагрузки (участок CD диаграммы почти горизонтален). Это явление называется текучестью материала.

При дальнейшем увеличении нагрузки напряжение повышается (от точки  D), после чего в наименее прочной части образца появляется сужение («шейка»). Из-за уменьшения площади сечения (точка Е) для дальнейшего удлинения нужно меньшее напряжение, но, в конце концов, наступает разрушение образца (точка К). Наибольшее напряжение, которое выдерживает образец без разрушения, называется пределом прочности. Обозначим его σпч (оно соответствует точке Е диаграммы). Его значение сильно зависит от природы материала и его обработки.

Чтобы свести к минимуму возможность разрушения сооружения, инженер должен при расчетах допускать в его элементах такие напряжения, которые будут составлять лишь часть предела прочности материала. Их называют допустимыми напряжениями. Число, показывающее, во сколько раз предел прочности больше допустимого напряжения, называют коэффициентом запаса прочности. Обозначив запас прочности через n, получим:

.

Запас прочности выбирается в зависимости от многих причин: качества материала, характера нагрузки (статическая или изменяющаяся со временем), степени опасности, возникающей при разрушении, и т.д. На практике запас прочности колеблется от 1,7 до 10. Выбрав правильно запас прочности, инженер может определить допустимое в конструкции напряжение.

Пластичность и хрупкость

Тело из любого материала  при малых деформациях ведет  себя как упругое. В то же время  почти все тела в той или  иной мере могут испытывать пластические деформации. Существуют хрупкие тела.

Механические свойства материалов разнообразны. Такие материалы, как резина или сталь, обнаруживают упругие свойства до сравнительно больших напряжений и деформаций. Для стали, например, закон Гука выполняется вплоть до ε = 1%, а для резины – до значительно больших ε, порядка десятков процентов. Поэтому такие материалы называют упругими.

У мокрой глины, пластилина или свинца область упругих деформаций мала. Материалы, у которых незначительные нагрузки вызывают пластические деформации, называют пластичными.

Деление материалов на упругие и пластичные в значительной мере условно. В зависимости от возникающих напряжений один и тот же материал будет вести себя или как упругий, или как пластичный. Так, при очень больших напряжениях сталь обнаруживает пластичные свойства. Это широко используют при штамповке стальных изделий с помощью прессов, создающих огромную нагрузку.

Холодная сталь  или железо с трудом поддаются  ковке молотом. Но после сильного нагрева им легко придать посредством  ковки любую форму. Пластичный при  комнатной температуре свинец приобретает ярко выраженные упругие свойства, если его охладить до температуры ниже –100 °С.

Большое значение на практике имеет свойство твердых  тел, называемое хрупкостью. Тело называют хрупким, если оно разрушается при небольших деформациях. Изделия из стекла и фарфора хрупкие: они разбиваются на куски при падении на пол даже с небольшой высоты. Чугун, мрамор, янтарь также обладают повышенной хрупкостью. Наоборот, сталь, медь, свинец не являются хрупкими.

Отличительные особенности хрупких тел легче всего уяснить с помощью зависимости σ от ε при растяжении. На рисунке 11, а, б изображены диаграммы растяжений чугуна и стали. На них видно, что при растяжении чугуна всего лишь на 0,1% в нем возникает напряжение около 80 МПа, тогда как в стали оно при такой же деформации равно лишь 20 МПа.

 

а

б

Рис. 11

Чугун разрушается  сразу при удлинении на 0,45%, почти  не испытывая предварительно пластических деформаций. Предел прочности его равен 1,2∙108 Па. У стали же при ε = 0,45% деформация все еще остается упругой и разрушение происходит при ε ≈ 15%. Предел прочности стали равен 700 МПа.

У всех хрупких материалов напряжение очень быстро растет с  удлинением, и они разрушаются  при весьма малых деформациях. Пластичные свойства у хрупких материй лов практически не проявляются.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Литература

  1. Кабардин  О.Ф. Физика: Справ. материалы: Учеб. пособие  для учащих-ся. – М.: Просвещение, 1991. – 367 с.
  2. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.
  3. Элементарный учебник физики: Учеб. пособие. В 3 т. / Под ред. Г.С. Ландсберга: т. 1. Механика. Теплота. Молекулярная физика. – М.: Физ-матлит, 2004. – 608 с.
  4. Яворский Б.М., Селезнев Ю.А. Справочное руководство по физике для поступающих в вузы и самообразования. – М.: Наука, 1983. – 383 с.
  5. Шубин Ф.С Курс общей физики. Учебн. Пособие для инж. – эконом. Специальностей вузов. 1976.

Информация о работе Деформация