Автор работы: Пользователь скрыл имя, 06 Февраля 2013 в 20:15, реферат
Хотя в вакууме электромагнитные волны всех частот распространяются одинаково — со скоростью света, их взаимодействие с веществом очень сильно зависит от частоты (а равным образом от длины волны и энергии кванта).
Диапазоны излучения и вещество |
Хотя в вакууме электромагнитные волны всех частот распространяются одинаково — со скоростью света, их взаимодействие с веществом очень сильно зависит от частоты (а равным образом от длины волны и энергии кванта). По характеру взаимодействия с веществом излучение делят на диапазоны: гамма-излучение, рентген, ультрафиолет, видимый свет, инфракрасное излучение и радиоволны, которые вместе образуют электромагнитный спектр. Сами эти диапазоны в свою очередь разделяют на поддиапазоны, причем в науке нет единой устоявшейся традиции такого деления. Тут многое зависит от применяемых технических средств для генерации и регистрации излучения. Поэтому в каждой сфере науки и техники поддиапазоны определяют по-своему, а нередко даже сдвигают границы основных диапазонов. Видимое излучение Из всего спектра человеческий глаз способен улавливать излучение только в очень узком диапазоне видимого света. От одного его края до другого частота излучения (а равно длина волны и энергия квантов) меняется менее чем в два раза. Для сравнения самые длинные радиоволны в 1014 раз длиннее видимого излучения, а самые энергичные гамма-кванты — в 1020 энергичнее. Тем не менее, на протяжении многих тысяч лет большую часть информации об окружающем мире люди черпали из диапазона видимого излучения, границы которого определяются свойствами светочувствительных клеток человеческой сетчатки. Разные длины волн видимого света воспринимаются человеком как разные цвета — от красного до фиолетового. Традиционное деление видимого диапазона спектра на семь цветов радуги является культурной условностью. Никаких четких физических границ между цветами нет. Англичане, например, обычно делят радугу на шесть цветов. Известны и другие варианты. За восприятие всего разнообразия цветов и оттенков видимого света отвечают всего три различных типа рецепторов, которые чувствительны к красному, зеленому и синему цвету. Это позволяет воспроизводить практически любой цвет, смешивая на экране эти три основных цвета. Для приема видимого света
от далеких космических источников
используют вогнутые зеркала, которые
собирают излучение с большой
площади практически в одну точку.
Чем крупнее зеркала, тем мощнее
телескоп. Зеркала должны изготавливаться
с чрезвычайно высокой Хотя атмосфера прозрачна
для видимого света (отмечено голубыми
стрелками на плакате), она всё
же создает серьезные помехи для
наблюдений. Даже если забыть про облака,
атмосфера немного искривляет лучи
света, что снижает четкость изображения.
Кроме того, сам воздух рассеивает
падающий свет. Днем это голубое
свечение, вызванное рассеянным светом
Солнца, не позволяет вести Ультрафиолетовое излучение С коротковолновой стороны от видимого света располагается ультрафиолетовый диапазон, который делят на ближний и вакуумный. Как и видимый свет, ближний ультрафиолет проходит через атмосферу. Органами чувств человек его не воспринимает, но на коже ближний ультрафиолет вызывает появление загара. Это защитная реакция кожи на определенные химические нарушения под действием ультрафиолета. Чем короче длина волны, тем большие нарушения может вызывать ультрафиолетовое излучение в биологических молекулах. Если бы весь ультрафиолет проходил через атмосферу, жизнь на поверхности Земли была бы невозможна. Однако выше некоторой частоты атмосфера перестает пропускать ультрафиолетовое излучение, поскольку энергии его квантов становится достаточно для разрушения (диссоциации) молекул воздуха. Одним из первых ультрафиолетовый удар принимает на себя озон, за ним следует кислород. Вместе атмосферные газы предохраняют поверхность Земли от жесткого ультрафиолетового излучения Солнца, которое называют вакуумным, поскольку оно может распространяться только в пустоте (вакууме). Верхний предел вакуумного ультрафиолета — 200 нм. С этой длины волны начинает поглощать ультрафиолет молекулярный кислород (O2). Телескопы для ближнего ультрафиолетового излучения строятся по тем же принципам, что и для видимого диапазона. В них тоже используются зеркала, покрытые тонким отражающим металлическим слоем, но изготавливать их надо с еще большей точностью. Ближний ультрафиолет можно наблюдать с Земли, вакуумный — только из космоса. Рентгеновское излучение Формальной границы между жестким ультрафиолетовым и рентгеновским излучением нет. К ее определению есть два основных подхода: с одной стороны, к рентгену принято относить излучение, способное вызывать возбуждение атомных ядер — подобно тому, как видимое и инфракрасное излучение возбуждает электронные оболочки атомов и молекул. В этом случае даже жесткий вакуумный ультрафиолет в некоторых случаях может быть отнесен к рентгену. В другом подходе рентгеном считают излучение с длиной волны меньше характерного размера атомов (0,1 нм). Тогда получается, что большую часть мягкого рентгеновского диапазона следует считать сверхжестким ультрафиолетом. Мягкое рентгеновское излучение еще может отражаться от полированного металла, но только при скользящем падении — под углом менее 1 градуса. Более жесткое излучение приходится концентрировать иными способами. Для задания направления используют узкие трубки, отсекающие кванты, приходящие сбоку, а приемником служит сцинтиллятор, в котором рентгеновские кванты ионизируют атомы, а те, вновь объединяясь с электронами, испускают видимое или ультрафиолетовое излучение, которое регистрируют при помощи фотоэлектронных умножителей. По сути, в телескопах жесткого рентгеновского диапазона ведется подсчет отдельных квантов излучения и уже потом при помощи компьютера формируется изображение. От рентгена к гамма Граница, на которой рентгеновский диапазон сменяется гамма-излучением, также условна. Обычно ее связывают с энергией квантов, которые испускаются при ядерных реакциях (или наоборот, могут их вызывать). Другой подход связан с тем, что тепловое излучение не принято относить к гамма-диапазону, как бы ни была высока его энергия. Во Вселенной наблюдаются относительно стабильные макроскопические объекты, разогретые до десятков миллионов градусов — это центральные участки аккреционных дисков вокруг нейтронных звезд и черных дыр. А вот объекты с температурой в миллиарды градусов — например, ядра массивных красных гигантов — практически всегда укрыты непрозрачной оболочкой. Впрочем, нередко даже излучение в их недрах называют не мягким гамма-излучением, а сверхжестким рентгеном. Устойчивых образований с температурой выше десятков миллиардов градусов в современной Вселенной неизвестно. Это дает основание считать, что гамма-излучение всегда генерируется нетепловым путем. Основным механизмом является излучение при столкновении заряженных частиц, разогнанных до околосветовых скоростей мощными электромагнитными полями, например, у нейтронных звезд. Гамма-излучение Деление гамма-излучения на поддиапазоны носит еще более условный характер. К сверхвысоким энергиям относят гамма-кванты, генерация которых выходит за пределы возможностей современных технологий. Все источники такого излучения связаны исключительно с космосом. Но поскольку технологиям свойственно развиваться, это определение нельзя назвать четким. Атмосфера защищает нас и от гамма-излучения. В мягком и жестком поддиапазонах она полностью его поглощает. Кванты диапазона сверхвысоких энергий, сталкиваясь с ядрами атомов в атмосфере, порождают каскады частиц, энергия которых постепенно снижается и рассеивается. Однако первые эшелоны частиц в них движутся быстрее скорости света в воздухе. В таких условиях заряженные частицы порождают так называемое тормозное (черенковское) излучение, в чем-то подобное звуковой ударной волне от сверхзвукового самолета. Ультрафиолетовые и видимые кванты тормозного излучения достигают поверхности Земли, где улавливаются специальными телескопами. Можно сказать, что сама атмосфера становится частью телескопа, и это позволяет наблюдать с Земли гамма-излучение сверхвысоких энергий. Это отмечено на плакате красными стрелками. Еще более энергичные кванты — ультравысоких энергий — порождают настолько мощные каскады частиц, что они пробивают атмосферу насквозь и достигают поверхности Земли. Их называют широкими атмосферными ливнями (ШАЛ) и регистрируют сцинтилляционными датчиками. Частицы ШАЛ наряду с естественной радиоактивностью земных пород могут повреждать биологические молекулы, в частности ДНК, и вызывать мутации в живых организмах. Тем самым они вносят свой вклад в эволюцию жизни на Земле. Но если бы их интенсивность была заметно выше, это могло бы стать серьезным препятствием для жизни. К счастью, чем выше энергия гамма-квантов, тем реже они встречаются. Самые энергичные кванты с энергией около 1020 эВ приходят примерно раз в сто лет на квадратный километр земной поверхности. Происхождение столь энергичных гамма-квантов пока не вполне ясно. Значительно большей энергией кванты обладать не могут, так как выше некоторого порога они начинают взаимодействовать с реликтовым микроволновым излучением, приводя к рождению заряженных частиц. Иначе говоря, Вселенная непрозрачна для излучения заметно более энергичного, чем 1021–1024 эВ. Инфракрасное излучение Отправляясь от видимого света в длинноволновую сторону спектра, мы попадаем в диапазон инфракрасного излучения. Ближнее ИК-излучение физически ничем не отличается от видимого света, за исключением того, что не воспринимается сетчаткой глаза. Его можно регистрировать теми же приборами, в частности, телескопами, что и видимый свет. Человек также ощущает инфракрасное излучение кожей — как тепло. Именно благодаря инфракрасному излучению нам тепло сидеть у костра. Большую часть энергии горения уносит вверх восходящий поток воздуха, на котором мы кипятим воду в котелке, а инфракрасное (и видимое) излучение испускается в стороны молекулами газов, продуктов сгорания и раскаленными частицами угля. С ростом длины волны атмосфера
теряет прозрачность для инфракрасного
излучения. Это связано с так
называемыми колебательно- Деление инфракрасного излучения
на поддиапазоны также весьма условно.
Граница между ближним и Дальний инфракрасный диапазон — один из наиболее сложных, как для генерации, так и для регистрации излучения. В последнее время благодаря разработке особых материалов и сверхбыстродействующей электроники с ним научились достаточно эффективно работать. В технике его часто называют терагерцевым излучением. Сейчас активно идет разработка бесконтактных сканеров для определения химического состава объектов на основе генераторов терагерцевого излучения. Они смогут выявлять пластиковую взрывчатку и наркотики на контрольных пунктах в аэропортах. В астрономии этот диапазон чаще называют субмиллиметровым излучением. Он интересен тем, что в нем (а также в соседнем с ним микроволновом диапазоне) наблюдается реликтовое излучение Вселенной. До уровня моря субмиллиметровое излучение не доходит, но поглощается оно в основном в самых нижних слоях атмосферы. Поэтому в горах Чили и Мексики на высоте около 5 тысяч метров над уровнем моря сейчас строятся крупные субмиллиметровые телескопы — в Мексике 50-метровый, а в Чили массив из 64 телескопов диаметром 12 метров. Микроволны и радиоволны К инфракрасному диапазону примыкает радиоизлучение, которое охватывает весь длинноволновый край электромагнитного спектра. Энергия квантов в радиодиапазоне очень мала. Ее обычно не хватает для существенных изменений в структуре атомов и молекул, но хватает, чтобы взаимодействовать с вращательными уровнями молекул, например, воды. Энергии радиоволн также достаточно для того, чтобы воздействовать на свободные электроны, например, в проводниках. Колебания электромагнитного поля радиоволны вызывают синхронные колебания электронов в антенне, то есть переменный электрический ток. При высокой интенсивности микроволнового излучения этот ток может вызывать значительный нагрев вещества. Это свойство используется для разогрева продуктов, содержащих воду, в микроволновых печах. Микроволновое излучение также называют сверхвысокочастотным (СВЧ) излучением. Оно является самым коротковолновым поддиапазоном радиоизлучения с длиной волны от 1 мм до 30 см. СВЧ-излучение проникает в толщу продуктов на глубину до нескольких сантиметров, что обеспечивает прогрев по всему объему, а не только с поверхности, как в случае обработки инфракрасным излучением на гриле. В микроволновом диапазоне также работают все системы сотовых телефонов и локальной радиосвязи, например, протоколы Bluetooth и WiFi, используемые беспроводными электронными устройствами. Чем больше длина радиоволны,
тем меньшую энергию она несет
и тем труднее ее зарегистрировать.
Для приема антенну, в которой
под действием радиоволны возникают
электрические колебания, подключают
к электрическому контуру. При попадании
в резонанс с его собственной
частотой колебания усиливаются
и их можно зарегистрировать. Чтобы
поймать радиоволны, идущие из космоса,
применяют зеркала-антенны Большая часть микроволнового излучения (начиная с длины волны 3–5 мм) проходит через атмосферу. То же можно сказать про ультракороткие волны (УКВ), на которых вещают местные телевизионные и радиостанции (в т. ч. FM-станции) и ведется космическая радиосвязь. Излучение их передатчиков регистрируется только в пределах прямой видимости антенн. Окно прозрачности атмосферы в радиодиапазоне (голубые стрелки на плакате) заканчивается примерно на длине волны 10–30 метров. Более длинные радиоволны
отражаются от ионосферы Земли. Это
не позволяет наблюдать Средние и длинные волны
также отражаются от ионосферы, но сильнее
затухают с расстоянием. Для того
чтобы сигнал можно было поймать
на расстоянии более тысячи километров,
требуются очень мощные передатчики.
Сверхдлинные радиоволны, с длиной
в сотни и тысячи километров, огибают
Землю уже не благодаря ионосфере,
а за счет волновых эффектов, которые
также позволяют им проникать
на некоторую глубину под Никакого теоретического
предела для длины радиоволн
неизвестно. На практике экспериментально
удалось создать и |