Автор работы: Пользователь скрыл имя, 18 Июня 2013 в 14:07, реферат
Газ всегда заполняет объём, ограниченный непроницаемыми для него стенками. Так, например, газовый баллон или камера автомобильной шины практически равномерно заполнены газом.
Итак , установим, от чего зависит давление газа? Во-первых, от степени сжатия газа, т.е. от того от того, сколько молекул газа находится в определённом объёме. Например, накачивая шину или сжимая её, мы заставляем газ сильнее давить на стенки камеры.
Министерство Образования Российской Федерации
Краевое государственное
бюджетное образовательное
по предмету "Основы гидравлики"
на тему: "Газовые законы"
Выполнил: Хайруллина А.А.
Проверил: Бурмистрова А.И.
Ачинск, 2013
Газовые законы
Газ всегда заполняет объём, ограниченный непроницаемыми для него стенками. Так, например, газовый баллон или камера автомобильной шины практически равномерно заполнены газом.
Итак , установим, от чего зависит давление газа? Во-первых, от степени сжатия газа, т.е. от того от того, сколько молекул газа находится в определённом объёме. Например, накачивая шину или сжимая её, мы заставляем газ сильнее давить на стенки камеры.
Во-вторых, от того, какова температура газа.Обычно изменение давления вызывается обеими причинами сразу: и изменением объёма, и изменением температуры. Но можно осуществить явление так, что при изменении объёма температура будет меняться ничтожно мало или при изменении температуры объём практически останется неизменным. Этими случаями мы сперва и займёмся, сделав предварительно ещё следующее замечание.
Формула, выражающая закон Шарля.
Закон Шарля позволяет рассчитать давление газа при любой температуре, если известно его давление при 0°С. Пусть давление при 0°С данной массы газа в данном объеме есть p0, а давление того же газа при температуре t есть p. Приращение температуры есть t, следовательно, приращение давления равно ap0t и искомое давление равноP =p0+ap0t=p0 (1+at)= p0(1+t/273) Этой формулой можно пользоваться также и в том случае, если газ охлажден ниже 0°С; при этом t будет иметь отрицательные значения. При очень низких температурах, когда газ приближается к состоянию сжижения, а также в случае сильно сжатых газов закон Шарля неприложим и формула перестает быть годной.
Закон Шарля с точки зрения молекулярной теории
Что происходит в микромире молекул, когда температура газа меняется, например когда температура газа повышается и давление его увеличивается? С точки зрения молекулярной теории возможны две причины увеличения давления, данного газа: во-первых, могло увеличиться число ударов молекул на 1 см2 в течение 1 сек; во-вторых, могло увеличиться количество движения, передаваемое при ударе в стенку одной молекулой. И та и другая причина требует увеличения скорости молекул. Отсюда становится ясным, что повышение температуры газа (в макромире) есть увеличение средней скорости беспорядочного движения молекул (в микромире). Опыты по определению скоростей газовых молекул, о которых буду говорить немного далее, подтверждают этот вывод. Когда мы имеем дело не с газом, а с твердым иди жидким телом, в нашем распоряжении нет таких непосредственных методов определения скорости молекул тела. Однако и в этих случаях несомненно, что с повышением температуры скорость движения молекул возрастает.
Изменение температуры газа при изменении его объема. Адиабатические и изотермические процессы.
Мы установили, как
зависит давление газа от
Закон Бойля — Мариотта
Перейдем теперь к более подробному изучению вопроса, как меняется давление некоторой массы газа, если температура его остается неизменной и меняется только объем газа. Мы уже выяснили, что такой изотермический процесс осуществляется при условии постоянства температуры тел, окружающих газ, и настолько медленного изменения объема газа, что температура газа в любой момент процесса не отличается от температуры окружающих тел.
Мы ставим, таким образом,
вопрос: как связаны между собой
объем и давление при изотермическом
изменении состояния газа? Ежедневный
опыт учит нас, что при уменьшении
объема некоторой массы газа давление
его увеличивается. В качестве примера
можно указать повышение
Опыты, устанавливающие зависимость между объемом и давлением газа, можно воспроизвести: на вертикальной стойке, снабжённой делениями, находятся стеклянные трубки А и В, соединенные резиновой трубкой С. В трубки налита ртуть. Трубка В сверху открыта, на трубке А имеется кран. Закроем этот кран, заперев таким образом некоторую массу воздуха в трубке А. Пока мы не сдвигаем трубок, уровень ртути в обеих трубках одинаков. Это значит, что давление воздуха, запертого в трубке А, такое же, как и давление окружающего воздуха.
Будем теперь медленно поднимать
трубку В. Мы увидим, что ртуть в
обеих трубках будет
Формула, выражающая закон Бойля — Мариотта.
Зависимость между плотностью газа и его давлением.
Вспомним, что плотностью вещества называется масса, заключенная в единице объема. Если мы как-нибудь изменим объем данной массы газа, то изменится и плотность газа. Если, например, мы уменьшим объем газа в пять раз, то плотность газа увеличится в пять раз. При этом увеличится и давление газа; если температура не изменилась, то, как показывает закон Бойля — Мариотта, давление увеличится тоже в пять раз. Из этого примера видно, что при изотермическом процессе давление газа изменяется прямо пропорционально его плотности. Обозначив плотности газа при давлениях P1 и P2 буквами d1 иd2, можем написать:
Этот важный результат можно считать другим и более существенным выражением закона Бойля — Мариотта. Дело в том, что вместо объема газа, который зависит от случайного обстоятельства — оттого, какая выбрана масса газа,— в формулу (3) входит плотность газа, которая, также как и давление, характеризует состояние газа и вовсе не зависит от случайного выбора его массы.
Молекулярное толкование закона Бойля — Мариотта.
В предыдущей главе мы выяснили на основании закона Бойля — Мариотта, что при неизменной температуре давление газа пропорционально его плотности. Если плотность газа меняется, то во столько же раз меняется и число молекул в 1 см3. Если газ не слишком сжат и движение газовых молекул можно считать совершенно независимым друг от друга, то число ударов за 1 сек на 1 см2 стенки сосуда пропорционально числу молекул в 1 см3. Следовательно, если средняя скорость молекул не меняется с течением времени (мы уже видели, что в макромире это означает постоянство температуры), то давление газа должно быть пропорционально числу молекул в 1 см3, т.е. плотности газа. Таким образом, закон Бойля — Мариотта является прекрасным подтверждением наших представлений о строении газа.
Однако, закон Бойля — Мариотта перестает оправдываться, если перейти к большим давлениям. И это обстоятельство может быть прояснено, как считал еще М. В. Ломоносов, на основании молекулярных представлений.
С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объем газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки.
С другой стороны в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к другим молекулам гораздо большую часть времени, чем молекулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направлению к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях. более существенным является второе обстоятельство и произведение PV немного уменьшается. При очень высоких давлениях большую роль играет первое обстоятельство и произведение PV увеличивается. Итак, и сам закон Бойля — Мариотта и отступления от него подтверждают молекулярную теорию.
Изменение объема газа при изменении температуры
Мы изучали, как
зависит давление некоторой
Рассмотрим такой опыт.
Коснемся Ладонью сосуда, изображенного
на рис., в котором горизонтальный
столбик ртути запирает некоторую
массу воздуха. Газ в сосуде нагреется,
его давление повысится, и ртутный
столбик начнет перемещаться вправо.
Движение столбика прекратится, когда
благодаря увеличению объема воздуха
в сосуде давление его сделается
равным наружному. Таким образом, в
конечном результате этого опыта
объем воздуха при нагревании
увеличился, а давление осталось неизменным.
Если бы мы знали, как изменилась в
нашем опыте температура
Закон Гей-Люссака.
Количественное Исследование зависимости объема газа от температуры при неизменном давлении было произведено французским физиком и химиком Гей-Люссаком (1778—1850) в 1802 г. Опыты показали, что увеличение объема газа пропорционально приращению температуры. Поэтому тепловое расширение газа можно, так же, как и для других тел, охарактеризовать при помощи коэффициента объемного расширения b. Оказалось, что для газов этот закон соблюдается гораздо лучше, чем для твердых и жидких тел, так что коэффициент объемного расширения газов есть величина, практически постоянная даже при очень значительных повышениях Температуры, тогда как для жидких и твердых тел это; постоянство соблюдается лишь приблизительно.
Отсюда найдем:
Опыты Гей-Люссака и других обнаружили замечательный результат. Оказалось, что коэффициент объемного расширения у всех газов одинаков (точнее, почти одинаков) и равняется (1/273)град-1= =0,00366град-1. Таким образом, при нагревании при постоянном давлении на1° объем некоторой массы газа увеличивается на 1/273 того объема, который эта масса газа занимала при 0°С (закон Гей-Люссака). Как видно, коэффициент расширения газов совпадает с их термическим коэффициентом давления.
Закон Дальтона
До сих пор мы говорили о давлении какого-нибудь одного газа — кислорода, водорода и т. п. Но в природе и в технике мы очень часто имеем дело со смесью нескольких газов. Самый важный пример этого — воздух, являющийся смесью азота, кислорода, аргона, углекислого газа и других газов. От чего зависит давление смеси газов?