Геометрическая оптика

Автор работы: Пользователь скрыл имя, 08 Февраля 2013 в 15:39, доклад

Описание

Главную роль в ней играет понятие светового луча. В волновой оптике световой луч совпадает с направлением нормали к волновому фронту, а в корпускулярной – с траекторией движения частицы. В случае точечного источника в однородной среде световые лучи представляют собой прямые линии, выходящие из источника во всех направлениях. На границах раздела однородных сред направление световых лучей может изменяться вследствие отражения или преломления, но в каждой из сред они остаются прямыми. Также в соответствии с опытом принимается, что при этом направление световых лучей не зависит от интенсивности света.

Работа состоит из  1 файл

ГЕОМЕТРИЧЕСКАЯ ОПТИКА.doc

— 623.00 Кб (Скачать документ)

ГЕОМЕТРИЧЕСКАЯ ОПТИКА

 

Геометрическая  оптика основывается на представлении  о прямолинейном распространении  света. Главную роль в ней играет понятие светового луча. В волновой оптике световой луч совпадает с  направлением нормали к волновому  фронту, а в корпускулярной – с траекторией движения частицы. В случае точечного источника в однородной среде световые лучи представляют собой прямые линии, выходящие из источника во всех направлениях. На границах раздела однородных сред направление световых лучей может изменяться вследствие отражения или преломления, но в каждой из сред они остаются прямыми. Также в соответствии с опытом принимается, что при этом направление световых лучей не зависит от интенсивности света.

Отражение. Когда свет отражается от полированной плоской поверхности, угол падения (измеренный от нормали к поверхности) равен углу отражения (рис. 1), причем отраженный луч, нормаль и падающий луч лежат в одной плоскости. Если на плоское зеркало падает световой пучок, то при отражении форма пучка не изменяется; он лишь распространяется в другом направлении. Поэтому, глядя в зеркало, можно видеть изображение источника света (или освещенного предмета), причем изображение кажется таким же, как и исходный объект, но находящимся за зеркалом на расстоянии, равном расстоянию от объекта до зеркала. Прямая, проходящая через точечный объект и его изображение, перпендикулярна зеркалу. Рис. 1. ОТРАЖЕНИЕ ОТ ПЛОСКОЙ ПОВЕРХНОСТИ.

 

Многократное  отражение. Когда два зеркала  обращены одно к другому, изображение, возникающее в одном из них, отражается в другом, и получается целый ряд изображений, число которых зависит от взаимного расположения зеркал. В случае двух параллельных зеркал, когда объект помещается между ними (рис. 2,а), получается бесконечная последовательность изображений, расположенных на прямой, перпендикулярной обоим зеркалам. Часть этой последовательности можно увидеть, если зеркала расположены друг от друга на достаточно большом расстоянии, чтобы можно было заглянуть со стороны. Если два плоских зеркала образуют прямой угол, то каждое из двух первичных изображений отражается во втором зеркале, но при этом вторичные изображения совпадают, так что в результате получится всего три изображения (рис. 2,б). При меньших углах между зеркалами можно получить большее число изображений; все они расположены на окружности, проходящей через объект, с центром в точке на линии пересечения зеркал. Изображения, которые дают плоские зеркала, всегда мнимые – они не формируются реальными световыми пучками и потому не могут быть получены на экране. Рис. 2. МНОГОКРАТНОЕ ОТРАЖЕНИЕ. а – параллельные зеркала, бесконечная последовательность изображений; б – два зеркала под прямым углом друг к другу, три изображения.

 

Отражение от кривых поверхностей. Отражение  от кривых поверхностей происходит по тем же законам, что и от прямых, причем нормаль в точке отражения проводится перпендикулярно касательной плоскости в этой точке. Простейший, но самый важный случай – отражение от сферических поверхностей. В этом случае нормали совпадают с радиусами. Здесь возможны два варианта:

  1. Вогнутые зеркала: свет падает изнутри на поверхность сферы. Когда пучок параллельных лучей падает на вогнутое зеркало (рис. 3,а), отраженные лучи пересекаются в точке, расположенной на половине расстояния между зеркалом и центром его кривизны. Эта точка называется фокусом зеркала, а расстояние между зеркалом и этой точкой – фокусным расстоянием. Расстояние s от объекта до зеркала, расстояние sў от зеркала до изображения и фокусное расстояние f связаны формулой.

Рис. 3. ОТРАЖЕНИЕ ПАРАЛЛЕЛЬНОГО ПУЧКА света от кривых поверхностей. а – вогнутое зеркало; б – выпуклое зеркало.

 

1/f = (1/s) + (1/sў),

 

где все величины следует считать  положительными, если их измерять влево  от зеркала, как на рис. 4,а. Когда  объект находится на расстоянии, превышающем фокусное, формируется действительное изображение, но когда расстояние s меньше фокусного расстояния, расстояние до изображения sў становится отрицательным. При этом изображение формируется за зеркалом и является мнимым. Рис. 4. ГРАФИЧЕСКИЙ МЕТОД построения изображения, создаваемого вогнутым зеркалом. а – расстояние от зеркала до объекта больше радиуса; б – расстояние до объекта меньше фокусного расстояния.

 

2. Выпуклые зеркала: свет падает  извне на поверхность сферы.  В этом случае после отражения от зеркала всегда получается расходящийся пучок лучей (рис. 3,б), а изображение, образующееся за зеркалом, всегда мнимое. Положение изображений можно определить, пользуясь той же формулой, взяв в ней фокусное расстояние со знаком «минус».

 

На  рис. 4,а показано вогнутое зеркало. Слева в виде вертикальной стрелки изображен объект высотой h. Радиус сферического зеркала равен R, а фокусное расстояние f = R/2. В этом примере расстояние s от зеркала до объекта больше R. Изображение можно построить графически, если из бесконечно большого числа световых лучей рассмотреть три, исходящие из вершины объекта. Луч, параллельный главной оптической оси, после отражения от зеркала пройдет через фокус. Второй луч, попадающий в центр зеркала, отразится таким образом, что падающий и отраженный лучи образуют одинаковые углы с главной осью. Пересечение этих отраженных лучей даст изображение верхней точки объекта, а полное изображение объекта можно получить, если из этой точки опустить перпендикуляр hў на главную оптическую ось. Для проверки можно проследить за ходом третьего луча, идущего через центр кривизны зеркала и отражающегося от него обратно по тому же самому пути. Как видно из рисунка, он тоже пройдет через точку пересечения первых двух отраженных лучей. Изображение в этом случае будет действительным (оно формируется настоящими световыми пучками), перевернутым и уменьшенным.

 

То  же самое зеркало представлено на рис. 4,б, но расстояние до объекта меньше фокусного. В этом случае после отражения  лучи образуют расходящийся пучок, а их продолжения пересекаются в точке, которую можно рассматривать как источник, из которого выходит весь пучок. Изображение будет мнимым, увеличенным и прямым. Случаю, представленному на рис. 4,б, соответствует вогнутое зеркало для бритья, если объект (лицо) располагается в пределах фокусного расстояния.

 

Преломление. При прохождении света через  границу раздела двух прозрачных сред, таких, как воздух и стекло, угол преломления (между лучом во второй среде и нормалью) меньше угла падения (между падающим лучом и той же нормалью), если свет проходит из воздуха в стекло (рис. 5), и больше угла падения, если свет проходит из стекла в воздух. Преломление подчиняется закону Снеллиуса, согласно которому падающий и преломленный лучи и нормаль, проведенная через точку пересечения светом границы сред, лежат в одной плоскости, а угол падения i и угол преломления r, отсчитываемые от нормали, связаны соотношением n = sini/sinr, где n – относительный показатель преломления сред, равный отношению скоростей света в этих двух средах (скорость света в стекле меньше, чем в воздухе).

Рис. 5. ПРЕЛОМЛЕНИЕ СВЕТА.

 

Если  свет проходит через плоскопараллельную стеклянную пластинку, то, поскольку  такое двукратное преломление симметрично, выходящий луч параллелен падающему. Если свет падает не по нормали к пластинке, то выходящий луч будет смещен относительно падающего на расстояние, зависящее от угла падения, толщины пластинки и показателя преломления. Если же пучок света проходит через призму (рис. 6), то направление выходящего пучка изменяется. Кроме того, показатель преломления стекла неодинаков для разных длин волн: для фиолетового света он больше, чем для красного. Поэтому, когда через призму проходит белый свет, его цветовые составляющие отклоняются в разной степени, разлагаясь в спектр. Менее всего отклоняется красный свет, за ним следуют оранжевый, желтый, зеленый, голубой, синий и, наконец, фиолетовый. Зависимость показателя преломления от длины волны излучения называется дисперсией. Дисперсия, как и показатель преломления, сильно зависит от свойств материала. Угловое отклонение D (рис. 6) минимально при симметричном ходе луча через призму, когда угол падения луча при входе в призму равен углу, под которым этот луч выходит из призмы. Такой угол называется углом минимального отклонения. Для призмы с преломляющим углом A (углом при вершине) и относительным показателем преломления n справедливо соотношение n = sin[(A + D)/2]sin(A/2), которым определяется угол минимального отклонения.

Рис. 6. РАЗЛОЖЕНИЕ СВЕТА ПРИЗМОЙ.

 

 

Критический угол. Когда луч света  переходит из оптически более  плотной среды, такой, как стекло, в менее плотную, такую, как воздух, угол преломления оказывается больше угла падения (рис. 7). При некотором  значении угла падения, которое называется критическим, преломленный луч будет скользить вдоль границы раздела, все еще оставаясь во второй среде. Когда угол падения превысит критический, преломленного луча уже не будет, а свет полностью отразится назад в первую среду. Такое явление называется полным внутренним отражением. Поскольку при угле падения, равном критическому, угол преломления равен 90° (sinr = 1), критический угол C, при котором начинается полное внутреннее отражение, дается соотношением sinC = 1/n, где n – относительный показатель преломления.

Рис. 7. ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ.

 

Линзы. При преломлении на кривых поверхностях тоже применим закон Снеллиуса, как и закон отражения. Опять-таки наиболее важное значение имеет случай преломления на сферической поверхности. Рассмотрим рис. 8,а. Прямая, проведенная через вершину сферического сегмента и центр кривизны, называется главной осью. Луч света, идущий вдоль главной оси, падает на стекло по нормали и потому проходит без изменения направления, но другие, параллельные ему лучи падают на поверхность под разными углами к нормали, увеличивающимися с удалением от главной оси. Поэтому и преломление будет больше для удаленных лучей, но все лучи такого параллельного пучка, идущего параллельно главной оси, пересекут ее в точке, называемой главным фокусом. Расстояние от этой точки до вершины поверхности называется фокусным расстоянием. Если пучок таких же параллельных лучей падает на вогнутую поверхность, то после преломления пучок становится расходящимся, а продолжения этих лучей пересекаются в точке, которая называется мнимым фокусом (рис. 8,б). Расстояние от этой точки до вершины тоже называется фокусным расстоянием, но ему приписывается знак «минус».

Рис. 8. ПРЕЛОМЛЕНИЕ НА КРИВЫХ ПОВЕРХНОСТЯХ. а – выпуклая поверхность; б –  вогнутая поверхность.

 

Тело из стекла или другого оптического материала, ограниченное двумя поверхностями, радиусы кривизны и фокусные расстояния которых велики по сравнению с другими размерами, называется тонкой линзой. Из шести линз, показанных на рис. 9, первые три – собирающие, а остальные три – рассеивающие. Фокусное расстояние тонкой линзы можно рассчитать, если известны радиусы кривизны и показатель преломления материала. Соответствующая формула имеет вид

Рис. 9. ТОНКИЕ ЛИНЗЫ. 1 – двояковыпуклая; 2 – плосковыпуклая; 3 – выпуклый мениск; 4 – двояковогнутая; 5 – плосковогнутая; 6 – вогнутый мениск.

 

 

где R1 и R2 – радиусы кривизны поверхностей, которые в случае двояковыпуклой линзы (рис. 10) считаются положительными, а в случае двояковогнутой – отрицательными.

 

Положение изображения для заданного объекта можно рассчитать по простой формуле с учетом некоторых условностей, показанных на рис. 10. Объект помещают слева от линзы, а ее центр считается началом координат, от которого измеряются все расстояния вдоль главной оси. Область слева от линзы называется пространством объекта, а справа – пространством изображения. При этом расстояние до объекта в пространстве объекта и расстояние до изображения в пространстве изображения считаются положительными. Все расстояния, показанные на рис. 10, положительные.

Рис. 10. ГРАФИЧЕСКОЕ ПОСТРОЕНИЕ изображения, создаваемого двояковыпуклой линзой в случае, когда расстояние до объекта больше фокусного расстояния.

 

В этом случае, если f – фокусное расстояние, s – расстояние до объекта, а sў –  расстояние до изображения, формула тонкой линзы запишется в виде

 

1/f = (1/s) + (1/sў)

 

Формула применима и для вогнутых линз, если считать фокусное расстояние отрицательным. Заметим, что, поскольку  световые лучи обладают свойством обратимости (т.е. пойдут по тому же самому пути, если изменить их направление на противоположное), объект и изображение можно поменять местами при условии, что изображение является действительным. Пары таких точек называют сопряженными точками системы.

 

Руководствуясь рис. 10, можно построить также изображение точек, находящихся вне главной оси. Плоскому объекту, перпендикулярному оси, будет соответствовать также плоское и перпендикулярное оси изображение при условии, что размеры объекта малы по сравнению с фокусным расстоянием. Лучи, проходящие через центр линзы, не отклоняются, а лучи, параллельные главной оси, пересекаются в фокусе, лежащем на этой оси. Объект на рис. 10 представлен стрелкой h слева. Изображение верхней точки объекта находится в точке пересечения множества исходящих из нее лучей, из которых достаточно выбрать два: луч, параллельный главной оси, который затем пройдет через фокус, и луч, проходящий через центр линзы, который не меняет своего направления, проходя через линзу. Получив таким образом верхнюю точку изображения, достаточно опустить перпендикуляр на главную ось, чтобы получить все изображение, высоту которого обозначим через hў. В случае, показанном на рис. 10, мы имеем действительное, перевернутое и уменьшенное изображение. Из соотношений подобия треугольников нетрудно найти отношение m высоты изображения к высоте объекта, которое называется увеличением:

 

m = hў/h = sў/s.

 

Комбинации линз. Когда речь идет о системе нескольких линз, положение  окончательного изображения определяется последовательным применением к  каждой линзе известной нам формулы с учетом знаков. Такую систему можно заменить одной линзой с «эквивалентным» фокусным расстоянием. В случае двух отстоящих друг от друга на расстояние a простых линз с общей главной осью и фокусными расстояниями f1 и f2 эквивалентное фокусное расстояние F дается формулой

Информация о работе Геометрическая оптика