Автор работы: Пользователь скрыл имя, 17 Ноября 2011 в 17:07, реферат
Открытие радиоактивности послужило толчком для прикладного использования этого физического явления.
Реферат
Тема: Искусственные
источники радиации
Выполнила : Авдеенко
Ирина , 213 группа
Искусственные
источники радиации
Открытие
радиоактивности послужило
В результате хозяйственной деятельности за последние несколько десятилетий человек создал искусственные источники радиоактивного излучения и научился использовать энергию атома в самых разных целях: медицине, для производства энергии и атомного оружия, для поиска полезных ископаемых и обнаружения пожаров. Мирный атом применяется в сельском хозяйстве и археологии. С каждым годом увеличивается количество искусственных источников излучения, используемых в сфере деятельности человека, которые дают дополнительную дозовую нагрузку.
Дозы, полученные каждым отдельным человеком от искусственных источников радиации очень разнятся. В большинстве случаев они невелики, но иногда техногенное облучение оказывается весьма значительным, хотя и его гораздо легче контролировать.
Совершенно иная ситуация сложилась на территориях, пострадавших от Чернобыльской катастрофы, между искусственными и естественными источниками облучения, о чем подробнее остановимся ниже.
Излучение
в медицине
Медицинские процедуры и методы лечения, которые связаны с применением радиоактивного излучения вносят основной вклад среди техногенных источников радиации. Различают три самостоятельных направления применения радиации в медицине.
1. Использование излучения в диагностических целях. Наиболее распространенным из них являются рентгеновские лучи. Принцип рентгенографии основан на способности рентгеновских лучей проходить сквозь человеческий организм. Как правило, они легче проходят сквозь мягкие ткани и труднее сквозь кости. Результат фиксируется на фотопленке или мониторе компьютера.
В развитых странах в среднем каждый человек раз в два года проходит рентгеновские обследования, не считая рентгенологических обследований зубов и массовой флюорографии. В большинстве стран около половины обследований приходится на долю грудной клетки, но по мере уменьшения заболева-ния туберкулезом интенсивность массовых обследований снижается.
Развитие компьютерной техники позволило совместить рентгеноскопию с современными методами обработки информации. Компьютерная томография находит все более широкое применение. Такая методика при обследовании почек позволила уменьшить дозы облучения кожи в 5 раз, а яичников — в 25 раз по сравнению с обычными методами.
В настоящее время разработан новый метод диагностики на основе ядерно-магнитного резонанса. В таких установках используют не рентгеновское излучение, а очень интенсивное магнитное поле и электромагнитные волны радиочастотного диапазона, этот вид диагностики особенно важен в условиях чернобыльского фактора, так как не дает дополнительной дозовой нагрузки.
2. Введение радиоактивных изотопов в организм человека. Метод основан на регистрации излучения снаружи организма после того, как изотопы сконцентрируются в определенном органе, расположенном в глубине тела.
Область
использования радиоактивных
Годовая эффективная эквивалентная доза от данных видов исследований по мнению японских ученых составляет 20 мкЗв на человека.
3. В настоящее время ионизирующие излучения используют для борьбы со злокачественными болезнями. Лучевая терапия основана на способности рентгеновских лучей (или других видов ионизирующих излучений) воздействовать на клетки биологической ткани посредством устранения их способности к делению и размножению. Успешное лечение зависит от точного направления луча и обеспечения строгого режима облучения дозами, распределенными в течение длительного периода времени
В мире насчитывается несколько тысяч радиотерапевтических установок, которые используются для лечения рака. Суммарные дозы для каждого человека довольно велики, однако их получает небольшое число людей. Поэтому их вклад в коллективную дозу незначителен.
Средняя
эффективная эквивалентная
Ядерные
взрывы
Любое научное открытие, как показал исторический опыт, может быть использовано во благо или во вред человеческой цивилизации. Одним из примеров этого является разработка и применение ядерного оружия.
Испытания ядерного оружия в атмосфере, начатые после второй мировой войны, являются дополнительным источником облучения населения Земли. Наибольшее количество испытаний было проведено в 1954-1958 и 1961-1962 годах. С 1963 года проводятся в основном подземные испытания, которые обычно не сопровождаются образованием радиоактивных осадков. На рис. 2.9 приведены данные о количестве испытаний в атмосфере различными государствами в период 1954-1962г.г.
В результате взрывов на планете образовалось огромное количество радионуклидов. Часть радиоактивного материала выпала неподалеку от места взрыва (локальные осадки). Тропосферные осадки выпали на расстоянии нескольких сотен тысяч километров в течение месяца после взрыва. Их распространение зависит от погодных условий на данной широте. Большая часть радиоактивного материала сосредоточилась в стратосфере (10-50 км от поверхности Земли), обуславливая глобальное радиоактивное загрязнение окружающей среды в течение многих лет. Радиоактивные осадки состоят из нескольких сотен различных радионуклидов, но наибольшее значение для формирования доз облучения населения Земли имеют следующие: углерод-14, цезий-137, церий-144, стронций-90, рутений-106, цирконий-95, тритий и иод-131. Дозы облучения от этих и других радионуклидов неодинаковы в различные периоды времени после взрыва, так как различна скорость их распада.
Энергетика
Атомная электростанция (АЭС) — новый современный тип предприятий по производству электроэнергии. В основе ее производства лежат цепные реакции деления тяжелых ядер.
Ядерным горючим служат изотопы урана -235 и -238,_ Ри-239, Th-232, но для большинства АЭС используется только U-235, 238, получаемые из урановой руды.
При
распаде этих элементов выделяется
значительная энергия и, что особенно
важно, освобождаются два-три ней-' трона,
обладающих кинетической энергией порядка
нескольких МэВ; их называют "быстрыми",
в отличие от "медленных" нейтронов
(Е < 1 МэВ) и "тепловых" нейтронов
(Е < 0,01 эВ). Ядерная реакция распада
урана-235 выглядит следующим образом
Испускание при делении ядер -235, 239 и £/-233 нескольких нейтронов делает возможным осуществление цепной реакции. Каждый из нейтронов, образовавшихся при одном акте деления, если он будет захвачен ядром, вызовет появление новых нейтронов, способных, в свою очередь, вызвать реакции деления и т.д. Таким образом будет происходить лавинообразное нарастание нейтронов деления и развивается цепочка делящихся ядер (цепная реакция). В действительности, эта картина не всегда имеет место: часть вторичных нейтронов попадает в ядра атомов тех веществ, которые присутствуют в объеме, где развивается реакция, но не являются делящимися, другая часть может просто выйти за пределы активной зоны — пространства, где идет реакция.
Условием, необходимым для возникновения цепной реакции, является размножение вторичных нейтронов. Коэффициентом размножения нейтронов называют отношение числа нейтронов в данном поколении к числу нейтронов в предыдущем поколении. Величина этого коэффициента определяется значением среднего числа нейтронов, образующихся при одном акте деления, вероятностями различных процессов взаимодействия нейтронов с ядрами делящегося вещества и примесей, а так же размерами системы, в которой происходит реакция.
Выше описанный процесс может иметь практическое значение, если удастся осуществить цепную реакцию и сделать ее управляемой, т.е. вызвать быстрое нарастание процесса, остановку нарастания и создание стационарного процесса, уровень которого может устанавливаться экспериментатором.
В этом плане наиболее приемлем изотоп -235, т.к. он делится как быстрыми, так и медленными нейтронами, причем вероятность деления после захвата нейтрона гораздо больше, чем у 238, способного делиться только под действием быстрых нейтронов. В естественном уране, содержащем более 99% ядер -238 и всего 0,72% 235, цепная реакция самопроизвольно не возникает. Поэтому в ядерных реакторах (устройствах, в которых осуществляется цепные ядерные реакции), работающих на необогащенном, природном уране, главная роль отводится редкому изотопу 235.
Первый ядерный реактор был построен в декабре 1942 года в США под руководством Э. Ферми. Первый европейский ядерный реактор создан в СССР в Москве под руководством М.В. Курчатова.
Некоторые из, так называемых, гетерогенных реакторов представляют систему графитовых блоков, в которые вставлены в определенном порядке урановые стержни. Между последними помещены управляющие стержни, содержащие кадмий. Уран является ядерным горючим; графит — замедлитель быстрых нейтронов; кадмий, хорошо поглощающий нейтроны, — поглотитель. Благодаря именно кадмию можно регулировать интенсивность процесса деления: для ослабления реакции управляющие стержни вдвигают в реактор, для ускорения — выдвигают из него. Область, где происходит реакция, окружена слоем бериллия, отражающего нейтроны, и бетонным слоем, поглощающим вредные для человека излучения.
На территории бывшего Советского Союза используются гетерогенные реакторы двух типов — ВВЭР и РБМК. Это реакторы" на тепловых нейтронах.
Аббревиатура ВВЭР расшифровывается как водо-водяной энергетический реактор. В данном случае это означает, что теп-' доносителем и замедлителем является вода.
РБМК — реактор большой мощности канальный (или кипящий). В реакторах этого типа замедлителем служит графит, а теплоносителем — вода.
Основные характеристики РБМК следующие. Активная зона реактора — вертикальный цилиндр эквивалентным диаметром 11,8 м, высотой 7 м. Боковой отражатель толщиной 1 м, торцо- _ вые отражатели — 0,5 м.
В качестве исходного топлива в реакторах РБМК используется обогащенный уран, т.е. содержание -235 составляет 2%.
Реактор РБМК использовался и на Чернобыльской АЭС.
Ядерный реактор заменяет топку котла. В остальном же АЭС содержит все элементы обычной электростанции. Ток газа, например гелия, передает тепло, освобождающееся в результате деления, в теплообменник. Там же образуется пар, направляющийся на турбину, к которой подключен генератор переменного тока.
АЭС имеет ряд преимуществ перед тепловыми электростанциями, работающими на угле или нефтепродуктах:
Кроме электроэнергии указанный тип реакторов, использующий смесь изотопов урана -235 и -238, производит Ри-239 — радиоактивный элемент, практически не встречающийся в природе:
Плутоний альфа-активен, период полураспада — 24400 лет. Этот изотоп применяется, главным образом, в военной промышленности. Иначе его называют оружейный плутоний.
Одним из факторов облучения человека, особенно после аварий на атомных электростанциях, является техногенный радиационный фон атомной энергетики, который при нормальной работе ядерной установки невелик.