История развития представлений о явлениях дифракции

Автор работы: Пользователь скрыл имя, 15 Марта 2012 в 13:11, реферат

Описание

Темой настоящей работы является анализ эволюции история развития представлений о дифракции света. Первоначально понятие дифракции относилось только к огибанию волнами препятствий, но в современном, более широком толковании, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн в неоднородных средах, а также при распространении ограниченных в пространстве волн. Дифракция тесно связана с явлением интерференции. Более того, само явление дифракции зачастую трактуют как частный случай интерференции (интерференция вторичных волн).

Содержание

Введение
Глава 1 Двойственное восприятие природы света
Глава 2 Развитие представлений о дифракции
Франческо Гримальди
Роберт Гук
Исаак Ньютон
Томас Юнг
Христиан Гюйгенс
Огюстен Френель
Йозеф Фраунгофер
Открытие дифракции частиц
Заключение
Список использованных источников

Работа состоит из  1 файл

Реферат.doc

— 99.50 Кб (Скачать документ)


Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Кафедра философии

 

 

 

 

 

 

История развития представлений о явлениях дифракции

Реферат

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Екатеринбург 2011

Содержание

Введение

Глава 1 Двойственное восприятие природы света

Глава 2 Развитие представлений о дифракции

Франческо Гримальди

Роберт Гук

Исаак Ньютон

Томас Юнг

Христиан Гюйгенс

Огюстен Френель

Йозеф Фраунгофер

Открытие дифракции частиц

Заключение

Список использованных источников

Введение

Темой настоящей работы является анализ эволюции история развития представлений о дифракции света. Первоначально понятие дифракции относилось только к огибанию волнами препятствий, но в современном, более широком толковании, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн в неоднородных средах, а также при распространении ограниченных в пространстве волн. Дифракция тесно связана с явлением интерференции. Более того, само явление дифракции зачастую трактуют как частный случай интерференции (интерференция вторичных волн).

Явление дифракции характерно для волновых процессов, то есть подтверждает волновую теорию света в проекции на один из фундаментальных законов природы: двойственности (дуализма) вещества и поля.

Дуализм, прежде всего, проявляется в том, что с одной стороны (при определённых условиях), материя представляет собой волны вероятностной и энергетической природы, с другой стороны – частицы с вполне определёнными физическими характеристиками: вес, масса, плотность и т.д.

Глава 1 Двойственное восприятие природы света

В древности представления о природе света были  весьма примитивными, фантастическими и к тому же весьма разнообразными. Однако несмотря на разнообразие взглядов древних на природу света, уже в то время наметились три основных подхода к решению вопроса о природе света. Эти три подхода в последующем оформились в две конкурирующие теории – корпускулярную и волновую теории света.

Подавляющее большинство древних философов и ученых рассматривало свет как некие лучи, соединяющие светящееся тело и человеческий глаз. При  этом одни из них полагали, что лучи исходят  из глаз человека, они как бы ощупывают рассматриваемый предмет. Эта точка зрения имела сначала большое число последователей. Даже такой крупнейший ученый, как Евклид, придерживался ее. Формулируя первый закон геометрической оптики, закон прямолинейного распространения света, Евклид писал: «Испускаемые глазами лучи распространяются по прямому пути». Такого же взгляда придерживался Птолемей и многие другие ученые и философы.

Однако позже, уже в средние века, такое представление о природе света теряет свое значение. Все меньше становится ученых, следующих этим взглядам. И к началу XVII в. эту точку зрения можно считать уже забытой.

Другие, наоборот, считали, что лучи испускаются светящимся телом и, достигая человеческого глаза, несут на себе отпечаток светящегося предмета. Такой точки зрения держались атомисты Демокрит, Эпикур, Лукреций.

Последняя точка зрения на природу света уже позже, в XVII в., оформилась в корпускулярную теорию света, согласно которой свет есть поток частиц, испускаемых светящимся телом.

Третья точка зрения на природу света была высказана Аристотелем. Он рассматривал свет не как истечение чего-то от светящегося предмета в глаз и тем более не как некие лучи, исходящие из глаза и ощупывающие предмет, а как распространяющееся в пространстве (в среде) действие или движение.

Мнение Аристотеля в его время мало кто разделял. Но в дальнейшем его точка зрения получила развитие и положила начало волновой теории света.

В XVII в. в связи с развитием оптики вопрос о природе света вызывает все больший и больший интерес. При этом происходит образование двух противоположных теорий света: корпускулярной и волновой.

Вся история развития представлений о свете показывает, что эволюция взглядов на свет происходила в тесной зависимости от условий, опытов, в которых рассматривались световые явления. Например, изначально корпускулярная теория света, выдвинутая И. Ньютоном, являлась следствием получившей в то время широкое развитие теории механики, в основе которой лежат частицы. Следуя этой теории по указанным выше вполне понятным причинам, свет также рассматривался как набор частиц (корпускул).

По мере развития представлений о другом виде материи (не веществе, а поле) стало обнаруживаться всё большее количество световых явлений, которые не могли быть истолкованы на основе механической – корпускулярной теории. Впервые, задолго до создания стройной гармоничной теории поля, базирующейся на уравнениях Максвелла, Френелем были предложены идеи, которые объяснили вполне удовлетворительно те свойства света, которые не могли быть объяснены в рамках корпускулярной теории.

Одно и то же явление объяснялось исходя из совершенно разных, диаметрально противоположных концепций. Действительно, волна и частица, как указывалось выше, проявляют себя совершенно по-разному. Однако этот парадокс – лишь кажущийся.

Точно так же и свет проявляет себя совершенно по-разному, в зависимости от условий эксперимента. Так, например, где необходимо иметь дело с малыми объёмами пространств: взаимодействия на атомном, молекулярном уровнях, т.е. там, где заданы экспериментом чёткие небольшие границы, там свет ведёт себя подобно корпускулам. Результаты таких экспериментов (фотоэффект) могут быть объяснены лишь на базе корпускулярной теории. Там же, где рассматривается распространение света в больших пространствах, где нет чёткой локализации параметров, а лишь их усреднения, там свет ведёт себя как волна.

В действительности дуализм материи имеет более глубокую природу. Для иллюстрации последнего факта заметим, что, продолжая аналогии о дуализме, М.Планк и Л. Де – Бройль установили, что и любые частицы могут вести себя как корпускулы при одних обстоятельствах и как волны при других. Причём волны носят вероятно – энергетический характер.

 

Глава 2 Развитие представлений о дифракции

Для развития корпускулярной теории света была более благоприятная почва. Действительно, для геометрической оптики представление о том, что свет есть поток особых частиц, было вполне естественным. Прямолинейное распространение света хорошо объяснялось с точки зрения этой теории. Также хорошо объяснялся и закон отражения света. Да и закон преломления не противоречил этой теории.

Общее представление о строении вещества также не вступало в противоречие с корпускулярной теорией света. В основе тогдашних представлений о строении вещества лежала атомистика. Все тела состоят из атомов. Между атомами существует пустое пространство. В частности, тогда считали, что межпланетное пространство является пустым. В нем и распространяется свет от небесных тел в виде потоков световых частиц. Поэтому вполне естественно, что в XVII в. было много физиков, которые придерживались корпускулярной теории света.

В XVII в., как мы сказали выше, начинает развиваться и представление о волновой природе света.

Франческо Гримальди

Первое открытие, свидетельствующее о волновой природе света, было сделано итальянским ученым Франческо Гримальди (1618 – 1663). Оно было опубликовано в 1665г. после смерти ученого.

Гримальди заметил, что если на пути узкого пучка световых лучей поставить предмет, то на экране, поставленном сзади, не получается резкой тени. Края тени размыты, кроме того, вдоль тени появляются цветные полосы. Открытое явление Гримальди назвал дифракцией, но объяснить его правильно не сумел. Он понимал, что наблюдаемое им явление находится в противоречии с законом прямолинейного распространения света, а вместе с тем и с корпускулярной теорией. Однако он не решился полностью отказаться от этой теории.

Свет, по Гримальди, распространяющийся световой флюид (тонкая неощутимая жидкость). Когда свет встречается с препятствием, то оно вызывает волны этого флюида. Гримальди привел аналогию с волнами, распространяющимися по поверхности воды. Подобно тому как вокруг камня, брошенного в воду, образуется волна, так и препятствие, помещенное на пути света, вызывает в световом флюиде волны, которые распространяются за границы геометрической тени. Гримальди наблюдал простой опыт по интерференции света. Опыт заключается в следующем: на пути солнечных лучей ставят экран с двумя  близкими  отверстиями (проделанными в ставне, закрывающей окно); получаются два конуса световых лучей. Помещая экран в том месте, где эти конусы накладываются друг на друга, замечают, что в некоторых местах освещенность экрана меньше, чем если бы его освещал только один световой конус. Из этого опыта Гримальди сделал вывод, что прибавление света к свету не всегда увеличивает освещенность.

Роберт Гук

Другой случай интерференции примерно в те же годы исследовал английский физик Роберт Гук (1635 – 1703). Он изучал цвета мыльных пленок и тонких пластинок из слюды. При этом он обнаружил, что эти цвета зависят от толщины мыльной пленки или слюдяной пластинки.

Гук подошел к изучению этих явлений с правильной точки зрения. Он полагал, что свет – это колебательные движения, распространяющиеся в эфире. Он даже считал, что эти колебания являются поперечными.

Явление интерференции света в тонких пленках Гук объяснял тем, что от верхней и нижней поверхности тонкой, например мыльной, пленки происходит отражение световых волн, которые, попадая в глаз, производят ощущение различных цветов. Однако у Гука не было правильного представления о том, что такое цвет.

Он не связывал цвет с частотой колебаний или с длиной волны, поэтому е смог разработать теорию интерференции.

Исаак Ньютон

Исаак Ньютон встал на точку зрения корпускулярной теории света, на основе которой было легко понять открытое им явление дисперсии света. Но ведь к тому времени были уже  известны явления из области волновой оптики – интерференция и дифракция. 3анимаясь исследованиями по оптике, Ньютон не мог пройти мимо них и должен был столкнуться с задачей объяснения этих явлений на основе корпускулярной теории.

И действительно, Ньютон не забыл об этих явлениях и попытался дать им объяснение. Что касается явления дифракции, то он более или менее легко, как казалось, справился с указанной задачей. Когда свет проходит мимо экрана, то между частицами, из которых состоит экран, и световыми лучами (атомами света) действуют силы притяжения. Вследствие этого лучи заходят в область геометрической тени.

Приведенное объяснение было, конечно, неверным. Но в то время, когда явление дифракции было еще недостаточно изучено, такое объяснение казалось убедительным.

Томас Юнг

В конце XVIII в. оптическими исследованиями занялся английский ученый Томас Юнг (1773 – 1829). Он пришел к важной идее, что кольца Ньютона очень просто можно объяснить с точки зрения волновой теории света, опираясь на принцип интерференции. 0н же впервые и ввел название «интерференция» (от латинских слов inter – взаимно и ferio – ударяю).

Весьма вероятно, что интерференцию Юнг открыл, наблюдая это явление для водяных волн.

Величайший вклад Юнга в теорию дифракции заключается в том, что он впервые дал объяснение этого явления на основе волновой теории. Он исходил из известного еще Ньютону факта, что освещенный край дифрагирующего экрана сам светится и, таким образом, является источником волнового движения. Он принимал, что явления дифракции возникают в результате интерференции двух волн. Первая, которая может быть названа прямой падающей волной, обнаруживается во всех точках пространства, куда свет может проникнуть согласно законам геометрической оптики и где он характеризуется той же волновой функцией, как и в случае невозмущенного распространения света. Это волновое движение претерпевает разрыв на границе геометрической тени, откуда и возникает резкий переход от света к темноте. Второе волновое движение, названное дифрагированной волной, представлено волной, отклоненной от края освещенного дифрагирующего экрана. Юнг предполагал, что это волновое движение непрерывно повсюду, даже за границами тени.

Подобное расщепление света на две части встречается уже в теории дифракции Ньютона, построенной на основе корпускулярных представлений о свете. По Ньютону, прямая падающая волна образована световыми частицами, которые проходят на некотором удалении от дифрагирующего края и не отклоняются им, а движутся без возмущения по прямолинейным путям. С другой стороны, дифрагированная волна состоит из световых частиц, которые проходят в непосредственной близости от дифрагирующего края и отклоняются им от своего первоначального пути.

Результаты своих исследований по оптике Юнг доложил на ученом заседании Лондонского королевского общества, а также опубликовал их в начале XIX в. Но, несмотря на убедительность работ Юнга, никто не хотел их признавать. Ведь признать правоту выводов Юнга означало отказаться от привычных взглядов и, кроме того, выступить против авторитета Ньютона. На это пока еще никто, кроме самого Юнга, не решался.

На работы Юнга не обратили внимания, а в печати даже появилась статья, содержащая грубые нападки на него. Корпускулярная теория света по-прежнему казалась непоколебимой.

Информация о работе История развития представлений о явлениях дифракции