История развития ядерной физики

Автор работы: Пользователь скрыл имя, 21 Марта 2012 в 14:31, реферат

Описание

Ядерная физика изучает процессы радиоактивного распада, механизм ядерных реакций и структуру атомного ядра
Очень часто ядерную физику относят к физике элементарных частиц. С исторической точки зрения ядерная физика возникла ещё до установления факта существования атомного ядра.

Содержание

Введение
1. Новая физика на рубеже веков: теория относительности, квантовая теория
2. Резерфорд открывает атомное ядро
3. Нерелятивистская квантовая теория. Уравнение Шредингера
3.1. Радиоактивность
3.2. Первая ядерная реакция
3.3. Состав атомного ядра
3.4. Размеры ядра
4. Позитрон. Аннигиляция. Взаимные превращения элементарных частиц
4.1. Парадоксы бета - распада. Нейтрино
4.2. Пионы - кванты ядерного поля
4.3. Лептоны
4.4. Ядерные реакции
4.5. Деление ядер
5. Новые горизонты ядерной физики. Радиоактивные пучки
6. Детекторы. Ускорители
Используемая литература

Работа состоит из  1 файл

Реферат.doc

— 112.50 Кб (Скачать документ)

где 11 (x,y,z,t) - волновая функция, - оператор Гамильтона (оператор полной энергии системы)

В нерелятивистском случае, где m - масса частицы, - оператор импульса, U(x,y,z) - потенциальная энергия частицы. Задать закон движения частицы в квантовой механике это значит определить значение волновой функции в каждый момент времени в каждой точке пространства. Уравнение Шредингера играет в квантовой механике такую же роль как и второй закон Ньютона в классической механике. Самой поразительной особенностью квантовой физики оказался ее вероятностный характер. Вероятностный характер законов является фундаментальным свойством микромира. Квадрат модуля волновой функции, описывающей состояние квантовой системы, вычисленный в некоторой точке, определяет вероятность обнаружить частицу в данной точке.

Радиоактивность

Некоторое время атомное ядро и электроны считались элементарными составляющими вещества. Первое указание на существование атомного ядра связано с открытием в 1898 году А. Беккерелем радиоактивности. Это произошло задолго до того, как Резерфорд экспериментально доказал его существование. Оказалось, что некоторые минералы естественного происхождения самопроизвольно испускают излучение неизвестной природы.

По прошествии нескольких лет было показано, что неизвестное излучение состоит из частиц трех различных видов, сильно отличающихся друг от друга:

Нейтрально заряженных частиц - фотонов.

Отрицательно заряженных частиц- электронов.

Положительно заряженных частиц.

Вначале считалось, что обнаруженные излучения испускаются атомом, и лишь впоследствии стало ясно, что их источником является атомное ядро. Явление самопроизвольного распада атомных ядер стало называться радиоактивностью. Выдающуюся роль в понимании природы радиоактивного распада сыграли работы Пьера и Марии Кюри

Изучая треки образующихся при радиоактивном распаде положительно заряженных частиц в электрическом поле, Э. Резерфорд показал, что это частицы с массой атома гелия и зарядом +2e. В 1919 году Ф. Астон построил первый масс-спектрограф, с помощью которого были получены точные значения масс атомных ядер. Было доказано, что положительно заряженные частицы, обнаруженные при радиоактивном распаде ядер, являются ядрами атома гелия. Эти частицы были названы 11 -частицами

3.2. Первая ядерная реакция

В 1919 г., продолжая эксперименты по рассеянию 11 -частиц на различных мишенях, Э. Резерфорд обнаружил, что при бомбардировке ядер азота -частицами из него вылетают положительно заряженные частицы. Величина заряда этих частиц по абсолютной величине была равна величине заряда электрона, но противоположна по знаку. Масса частицы была почти в 2000 раз больше массы электрона. Повторение опыта на других мишенях показало, что положительно заряженные частицы вылетают и из других атомных ядер. Обнаруженные частицы были названы протонами. Ядерная реакция, в которой впервые были обнаружены протоны, записывается в виде

14 N + 1   11 17 O + p

Уже первый взгляд на написанную реакцию свидетельствует о том, что Э. Резерфорду удалось осуществить то, что в течение многих веков пытались сделать алхимики - превратить одно вещество в другое. Ядро азота превращалось в ядро кислорода. Это была первая ядерная реакция, осуществленная искусственно в лабораторных условиях

В то же время стало ясно, что протоны следует считать элементарными частицами, входящими в состав атомного ядра

3.3. Из чего состоит атомное ядро?

Измерения масс атомов с помощью масс-спектрографа Ф. Астона показали, что массы всех исследованных атомов с точностью ~10% пропорциональны массе протона - M ~ Am p , где A принимает только целочисленные значения. Этот факт послужил основанием для создания протон-электронной модели атомного ядра. В этой модели предполагалось, что атомное ядро состоит из A протонов и (A-Z) электронов. В этой модели легко объяснялись обнаруженная Астоном пропорциональность массы атомного ядра числу A и величина заряда атомного ядра. Однако, по мере накопления экспериментальных данных по массам атомных ядер, магнитным моментам и спинам атомных ядер, протон-электронная модель ядра начала сталкиваться с трудностями в объяснении экспериментальных данных. Тем не менее, протон-электронная модель ядра продержалась вплоть до 1932 года

Простейшая модель -распада была предложена в 1928 году Г. Гамовым и независимо от него Г. Герни и Э. Кондоном. В этой модели предполагалось, что -частица постоянно существует в ядре. Вероятность -распада в основном определяется вероятностью прохождения -частиц через кулоновский потенциальный барьер

В 1930-1932 гг. разыгрались полные драматизма события. Продолжая начатые Резерфордом эксперименты по облучению тонких фольг из бериллия -частицами, В. Боте и Г. Беккер обнаружили сильно проникающее излучение, состоящее из нейтральных частиц. Первоначально выдвинутая гипотеза о том, что это фотоны высоких энергий, не выдержала проверки. Лишь в 1932 г. английский физик Д. Чедвик показал, что это новая, до сих пор неизвестная нейтральная частица с массой, приблизительно равной массе протона. Обнаруженная частица была названа нейтроном. Сразу после открытия нейтрона Д. Иваненко и В. Гейзенберг независимо выдвинули гипотезу, что атомное ядро состоит из нейтронов и протонов. Эта модель выдержала испытания временем и, как показывают экспериментальнные наблюдения, в обычных условиях отклонения от протонно-нейтронной модели, связанные с внутренней структурой нуклонов, невелики. Протоны и нейтроны в атомном ядре связаны особыми силами, для которых характерна большая величина и малый радиус действия ~10 -13  см. Ядерные силы существенно превосходят силы электростатического кулоновского отталкивания протонов и обуславливают большую плотность вещества ядра ~10 14  г/см 3 . Этот новый тип взаимодействия, связывающий нейтроны и протоны, назвали ядерным или сильным взаимодействием. Эти два названия долгое время считали синонимами. Сегодня мы знаем: сильное взаимодействие связывает кварки внутри нуклона, а ядерное взаимодействие, связывающее нейтроны и протоны, является следствием сильного взаимодействия. Ядерное взаимодействие меняет свойства нуклонов. Так, например, свободный нейтрон, являясь нестабильной частицей, внутри ядра может стать стабильным. По отношению к сильному взаимодействию протон и нейтрон имеют одинаковые свойства. Это привело к открытию новой симметрии - изотопической инвариантности сильных взаимодействий. Была введена новая квантовая характеристика - изоспин

С помощью изотопической инвариантности сильных взаимодействий в дальнейшем удалось предсказать массы и электрические заряды некоторых новых элементарных частиц. Протоны и нейтроны образуют атомные ядра всех химических элементов

3.4. Раз меры ядра

Еще на ранней стадии изучения структуры атомных ядер эксперименты по рассеянию 11 -частиц на легких ядрах дали основание предполагать, что плотность ядерного вещества у всех ядер приблизительно постоянна. Это предположение было в дальнейшем детально исследовано в опытах Р. Хофштатера по рассеянию электронов высокой энергии на сферических ядрах, расположенных вблизи долины стабильности. Оказалось, что плотности распределения ядерной материи и электрического заряда практически совпадают

Для ядер, расположенных вблизи долины стабильности, были установлены следующие закономерности

Плотность ядерной материи в центре ядра приблизительно одинакова у всех ядер и составляет ~ 0.17 нукл./Фм 3 (см. рис.3).

Толщина поверхностного слоя (спад плотности от 0.9 11 0 до 0.1 11 0 ) у всех ядер примерно одинакова d = 4.4a = 2.4·Фм.

Величина радиуса ядра определяется числом нуклонов, R = 1.3A 1/3 Фм.

4. Позитрон. Аннигиляция.

4.1. Взаимные превращения элементарных частиц

Открытие позитрона, частицы по своим характеристикам похожей на электрон, но имеющей в отличие от электрона положительный единичный заряд, было исключительно важным событием в физике. Еще в 1928 году П. Дирак предложил уравнение для описания релятивистской квантовой механики электрона. Оказалось, что уравнение Дирака имеет два решения, как с положительной, так и с отрицательной энергией. Состояние с отрицательной энергией описывает частицу аналогичную электрону, но имеющую положительный электрический заряд. Позитрон был первой открытой частицей из целого класса частиц, которые получили название античастиц. До открытия позитрона казалась необъяснимой неодинаковая роль положительных и отрицательных зарядов в природе. Открытие позитрона по существу восстановило зарядовую симметрию для легких частиц и поставило перед физиками проблему поиска античастицы для протона. Другая неожиданность - позитрон является стабильной частицей и может в пустом пространстве существовать бесконечно долго. Однако при столкновении электрона и позитрона происходит их аннигиляция. Электрон и позитрон исчезают, и вместо них рождаются два -кванта

Происходит превращение частиц с массой покоя отличной от нуля (0.511 МэВ) в частицы с нулевой массой покоя (фотоны), т.е. масса покоя не сохраняется.

Наряду с процессом аннигиляции был обнаружен и процесс рождения пары электрон-позитрон. Электрон-позитронные пары легко рождались -квантами с энергией в несколько МэВ в кулоновском поле атомного ядра. В классической физике понятия частицы и волны резко разграничены - одни физические объекты являются частицами, а другие - волнами. Превращение пары электрон-позитрон в фотоны стало дополнительным подтверждением представления о том, что между излучением и веществом много общего. Процессы аннигиляции и рождения пар заставили по-новому осмыслить, что же такое элементарная частица. Элементарная частица перестала быть неизменным "кирпичиком" в строении материи. Возникла новая чрезвычайно глубокая концепция взаимного превращения элементарных частиц. Оказалось, что элементарные частицы могут рождаться и исчезать, превращаясь в другие элементарные частицы. Следующая элементарная частица - нейтрино также вначале была предсказана теорией. Открытие нейтрона, казалось, внесло ясность в строение вещества. Все элементарные частицы, необходимые для построения атома: протон, нейтрон, электрон - были известны. Если в составе атомного ядра нет электронов, то откуда же берутся электроны, которые наблюдаются при радиоактивном распаде ядер?

4.2. Парадоксы бета - распада. Нейтрино

Ответ на этот вопрос был дан в 1932 г. через год после открытия нейтрона итальянским физиком Энрико Ферми в разработанной им теории -распада. -Распад в определенном смысле аналогичен испусканию фотонов возбужденными атомами. Ни электронов в ядре, ни фотонов в атоме нет до момента излучения, и фотон, и электрон образуются в процессе распада. Изучение процесса -распада показало, что испускание электронов вызвано не электромагнитным взаимодействием и не ядерным взаимодействием, а новым типом взаимодействия до сих пор неизвестным в физике. Это взаимодействие было названо слабым взаимодействием. В будущем оно принесло в физику много неожиданных и сенсационных открытий

Изучение явления -распада поставило перед физиками серьезную проблему. Экспериментальные факты казались несовместимыми с законами сохранения энергии, импульса и момента количества движения. Для того, чтобы спасти эти законы В. Паули в 1930 г. высказал предположение, что в процессе -распада наряду с электроном, который легко наблюдается, должна рождаться еще одна легкая частица с нулевым зарядом, нулевой массой покоя и спином 1/2. Поскольку нейтрино испускалось вместе с электроном в процессе -распада, оно могло уносить недостающую энергию, импульс и момент количества движения. Для того чтобы проверить гипотезу Паули, необходимо было обнаружить нейтрино экспериментально. Однако свойства нейтрино, предсказанные Паули, делали обнаружение ее чрезвычайно трудной задачей. Дело в том, что нейтрино должно было очень слабо взаимодействовать с веществом. Оно могло пролетать тысячи километров вещества без взаимодействия. Сечение взаимодействия нейтрино с энергией несколько МэВ с атомными ядрами ~10 -34 см 2 . Экспериментальные попытки непосредственно зарегистрировать нейтрино продолжались почти двадцать лет. Лишь в 1953 году в результате очень сложного эксперимента Ф. Райнесу и К. Коуэну удалось зарегистрировать антинейтрино. (Антинейтрино было зарегистрировано с помощью реакции

Источником антинейтрино служил атомный реактор, в котором антинейтрино образуются в большом количестве.). Гипотеза Паули получила блестящее подтверждение

4.3. Пионы – кванты ядерного поля

Наличие в атомном ядре нейтронов и протонов поставило перед физиками проблему изучения природы ядерных взаимодействий, связывающих эти частицы в ядре. В 1934 году Х. Юкава предсказал новую частицу - квант ядерного поля. Cогласно гипотезе Юкава взаимодействие между нуклонами возникает в результате испускания и поглощения этих частиц. Они определяют ядерное поле по аналогии с электромагнитным полем, которое возникает как следствие обмена фотонами

После предсказания свойств мезона начались энергичные поиски этой частицы. И уже через два года в 1937 г. в космических лучах с помощью камеры Вильсона была обнаружена частица с массой покоя равной примерно 200 массам покоя электрона. Вначале считалось, что это и есть предсказанный Юкавой мезон. Однако более детальное исследование свойств этой частицы показало, что обнаруженные в космических лучах мезоны взаимодействуют с нейтронами и протонами не достаточно сильно, как это должно было быть для переносчиков ядерного взаимодействия. Они не захватывались атомными ядрами, а распадались с испусканием электронов. Первоначальный энтузиазм сменился некоторым разочарованием. Наконец в 1947 году также в космических лучах была обнаружена еще одна частица, которая сильно взаимодействовала с протонами и нейтронами и была той самой частицей, которую предсказал Юкава. Ее назвали -мезоном или пионом

Пионы, нейтроны и протоны принадлежат к одному классу частиц, называемых адронами. Их отличительная черта - участие в сильных ядерных взаимодействиях

 

 

4.4. Лептоны

Открытая в 1937 году частица тоже была названа мезоном, -мезоном. Он имеет массу ~106 МэВ и существует в двух разновидностях - отрицательно заряженная частица и положительно заряженная античастица. Сегодня -мезон предпочитают называть мюоном

На то, что электронные и мюонные нейтрино разные частицы, впервые было указано в 1957 году М. Марковым и Ю. Швингером . Эта гипотеза была подтверждена в 1962 году в экспериментах на ускорителе в Брукхейвене. Было показано, что при взаимодействии мюонных нейтрино рождаются мюоны и не рождаются электроны

Мюоны, электроны и нейтрино относятся к семейству лептонов. Еще одна частица этого семейства - лептон (таон) была открыта М. Перлом в 1979 году в реакции . Она почти в два раза тяжелее протона и может распадаться не только подобно мюону на лептоны, но и на адроны

Существует космологическое ограничение на суммарную массу всех типов нейтрино

 m( 11 e ) + m( 11 ) + m( 11 ) < 40 эВ

Если нейтрино имеет массу, то возможны распады и осцилляции нейтрино, смешивание нейтрино различных типов. Гипотеза об осцилляции нейтрино была выдвинута в 1957 году Б. Понтекорво . В настоящее время интенсивно проводятся эксперименты по измерению массы покоя нейтрино, обнаружению осцилляций нейтрино. Если окажется, что масса нейтрино отлична от нуля, то масса вещества во Вселенной должна в основном определяться массой нейтрино.

4.5. Ядерные реакции

Развитие ядерной физики в большой степени определяется исследованиями в такой важной ее области, как ядерные реакции. Однако после того, как Резерфорд впервые наблюдал ядерную реакцию, до появления первой модели ядерной реакции прошло довольно много лет. -Частицы от радиоактивных источников могли эффективно преодолеть кулоновский барьер только на самых легких ядрах. С появлением ускорителей ситуация радикально изменилась, теперь можно было бомбардировать ядра не только -частицами. Повысились энергии и интенсивности пучков частиц.

Информация о работе История развития ядерной физики