Автор работы: Пользователь скрыл имя, 11 Февраля 2013 в 12:16, курсовая работа
Научная мысль обладает способностью опережать время. Открытия, сделанные ученными, позволяют будущим поколениям, руководствуясь ими, создавать улучшающие жизнь человека приборы и приспособления; находить новые способы защиты его здоровья и благополучия. Череда научных открытий в «великое десятилетие» начала девятнадцатого века заложила предпосылки для овладевания термоэлектричеством, безусловно, перспективнейшим направлением энергетики будущего. И явление, открытое в 1834 году часовщиком Жаном-Шарлем Пельтье и названное позже «Эффектом Пельтье», не стало исключением
ВВЕДЕНИЕ………………………………………………………………......3
1. ЭФФЕКТ ПЕЛЬТЬЕ………………………………………………………4
1.1. История открытия……………………………………………………….4
1.2. Теоретическое обоснование эффекта Пельтье………………………...6
2. ПРИМЕНЕНИЕ ЭФФЕКТА ПЕЛЬТЬЕ………………………………...14
2.1. Модули Пельтье………………………………………………………..14
2.2.Особенности эксплуатации модулей Пельтье……………………......19
2.3. Полупроводниковые холодильники Пельтье………………………..23
2.4. Применение эффекта Пельтье………………………………………..27
ЗАКЛЮЧЕНИЕ……………………………………………………………..30
СПИСОК ЛИТЕРАТУРЫ………………………………………………….32
Коэффициент Пельтье, являющийся важной технической характеристикой материалов, как правило, не измеряется, а вычисляется по коэффициенту термоэдс, измерение которого более просто.
Но, в то же время, необходимо отметить, что коэффициент термоэдс сложным образом зависит от состава и температуры полупроводника, при этом, по сравнению с металлами температурная зависимость a для полупроводников выражена значительно сильнее. Знак a определяется знаком носителей заряда. Не существует общих эмпирических, и тем более, теоретических формул, которые охватывали бы термоэлектрические свойства полупроводников в широком интервале температур. Обычно термоэлектродвижущая сила a полупроводника, начиная со значения a=0 при Т=0, растет сначала пропорционально Т, затем более замедленно, часто остается постоянной в некотором интервале температур, а в области высоких температур (более 500К - 700К) начинает убывать по закону a~1/Т.
Другой отличительной чертой полупроводников является определяющая роль примесей, введение которых позволяет не только во много раз изменять величину, но и менять знак a.
В полупроводниках со смешанной проводимостью вклады в термоэдс дырок и электронов противоположны, что приводит к малой величине a и П.
В частном случае, когда концентрации (n) и подвижности (u) электронов и дырок равны ( ne= np и ue= up ) величины a и П обращаются в ноль:
a ~ ( neue- npup) / (neue+ npup).
Некоторые значения коэффициента Пельтье в зависимости от температуры для различных пар металлов представлены в таблице 1.
Значения коэффициента
Пельтье для различных пар мета
Железо-константан |
Медь-никель |
Свинец-константан | |||
T, К |
П, мВ |
T, К |
П, мВ |
T, К |
П, мВ |
273 |
13,0 |
292 |
8,0 |
293 |
8,7 |
299 |
15,0 |
328 |
9,0 |
383 |
11,8 |
403 |
19,0 |
478 |
10,3 |
508 |
16,0 |
513 |
26,0 |
563 |
8,6 |
578 |
18,7 |
593 |
34,0 |
613 |
8,0 |
633 |
20,6 |
833 |
52,0 |
718 |
10,0 |
713 |
23,4 |
Величина выделяемого тепла Пельтье и его знак зависят от вида контактирующих веществ, силы тока и времени его прохождения, поэтому Qп может быть выражено еще одной формулой:
Здесь П12=П1-П2 - коэффициент Пельтье для данного контакта, связанный с абсолютными коэффициентами Пельтье П1 и П2 контактирующих материалов. При этом считается, что ток идет от первого образца ко второму. При выделении тепла Пельтье имеем: Qп>0, П12>0, П1>П2.
При поглощении тепла Пельтье оно считается отрицательным
и соответственно: Qп<0, П12<0, П
Размерность коэффициента Пельтье [П]СИ=Дж/Кл=В.
Вместо тепла Пельтье часто используют физическую величину, определяемую как тепловая энергия, ежесекундно выделяющаяся на контакте единичной площади. Эта величина, получившая название - мощность тепловыделения, определяется формулой:
где j=I/S - плотность тока;
S - площадь контакта;
I –сила тока.
Размерность этой величины [qП]СИ=Вт/м2.
2. ПРИМЕНЕНИЕ ЭФФЕКТА ПЕЛЬТЬЕ
2.1 Модули Пельтье
Эффект Пельтье лежит в основе работы термоэлектрического модуля (ТЭМ). Единичным элементом ТЭМ является термопара, состоящая из одного проводника (ветки) p-типа и одного проводника n-типа. При последовательном соединении нескольких таких термопар теплота (Qс), поглощаемая на контакте типа n-p, выделяется на контакте типа p-n (Qh). Термоэлектрический модуль представляет собой совокупность таких термопар, обычно соединенных между собой последовательно по току и параллельно по потоку тепла. Термопары помещаются между двух керамических пластин (Рис.3).
Рисунок 3. Внешний вид модуля Пельтье
Ветки напаиваются на медные проводящие площадки (шинки), которые крепятся к специальной теплопроводящей керамике, например, из оксида алюминия. Количество термопар может варьироваться в широких пределах - от нескольких единиц до нескольких сотен, что позволяет создавать ТЭМ с холодильной мощностью от десятых долей ватта до сотен ватт. Наибольшей термоэлектрической эффективностью среди промышленно используемых для изготовления ТЭМ материалов обладает теллурид висмута, в который для получения необходимого типа и параметров проводимости добавляют специальные присадки, например, селен и сурьму. Традиционно сторона, к которой крепятся провода, горячая и она изображается снизу (Рис.4).
Рисунок 4. - Структура модуля Пельтье
При прохождении через ТЭМ постоянного электрического тока возникает разность температур (dT=Th-Tc) между его сторонами: одна пластина (холодная) охлаждается, а другая (горячая) нагревается. По сути элемент Пельтье является своебразным тепловым насосом. При использовании модуля Пельтье необходимо обеспечить эффективный отвод тепла с его горячей стороны, например, с помощью воздушного радиатора или водяного теплообменника (водоблока). Здесь надо учесть, что отводить придется не только "перекачиваемую" теплоту, но и добавляемую (примерно 50%) самим модулем. Если поддерживать температуру горячей стороны модуля на уровне температуры окружающей среды, то на холодной стороне можно получить температуру, которая будет на десятки градусов ниже. В высококачественных серийных ТЭМ известных производителей, например, ИПФ КРИОТЕРМ (г.Санкт-Петербург), разность температур может достигать 74 град на одном каскаде. Модуль является обратимым, т.е. при смене полярности постоянного тока горячая и холодная пластины меняются местами. Можно использовать модуль в режиме термоциклирования: чередовать режим охлаждения с режимом нагрева с помощью переключателя. Как уже отмечалось, степень охлаждения пропорциональна величине тока, проходящего через ТЭМ, что позволяет при необходимости плавно регулировать температуру охлаждаемого объекта, причем с высокой точностью.
Типичный модуль обеспечивает значительный температурный перепад, который составляет несколько десятков градусов. При соответствующем принудительном охлаждении нагревающегося радиатора второй радиатор - холодильник, позволяет достичь отрицательных значений температур. Для увеличения разности температур возможно каскадное включение термоэлектрических модулей Пельтье при обеспечении адекватного их охлаждения. Это позволяет сравнительно простыми средствами получить значительный перепад температур и обеспечить эффективное охлаждение защищаемых элементов.
На рис. 5. представлен пример каскадного включения типовых модулей Пельтье.
Рисунок 5. Пример каскадного включения модулей Пельтье.
Устройства охлаждения на основе модулей Пельтье часто называют активными холодильниками Пельтье или просто кулерами Пельтье. Такой кулер обычно состоит из термоэлектрического модуля, выполняющего функции теплового насоса, и понижающих температуру горячей стороны радиатора и охлаждающего вентилятора (рис.6).
Рисунок 6. Внешний вид кулера с модулем Пельтье
Использование модулей Пельтье в активных кулерах делает их существенно более эффективными по сравнению со стандартными типами кулеров на основе традиционных радиаторов и вентиляторов. Однако в процессе конструирования и использования кулеров с модулями Пельтье необходимо учитывать ряд специфических особенностей, вытекающих из конструкции модулей, их принципа работы, архитектуры современных аппаратных средств компьютеров и функциональных возможностей системного и прикладного программного обеспечения.
Рисунок 7. Конструкция кулера с модулем Пельтье.
На рис. 7 представлена схема активного кулера, в составе которого использован полупроводниковый термоэлектрический модуль.
Большое значение имеет мощность модуля Пельтье, которая, как правило, зависит от его размера и от числа и параметров используемых в нем пар полупроводников p- и n-типа. Модуль малой мощности не способен обеспечить необходимый уровень охлаждения, что приводит к нарушению работоспособности электронного элемента, например, процессора, из-за перегрева. Однако применение модулей слишком большой мощности может понизить температуру охлаждающего радиатора до уровня конденсации влаги из воздуха, что может привести к коротким замыканиям в электронных цепях компьютера. Здесь уместно напомнить, что расстояние между проводниками на современных печатных платах нередко составляет доли миллиметров. Тем не менее именно мощные модули Пельтье в составе высокопроизводительных кулеров и соответствующие системы дополнительного охлаждения и вентиляции позволили в свое время фирмам KryoTech и AMD в совместных исследованиях разогнать процессоры AMD, созданные по традиционной технологии, до частоты, превышающей 1 ГГц, т. е. увеличить их частоту почти в два раза по сравнению со штатным режимом. Необходимо еще подчеркнуть, что данный уровень производительности был достигнут в условиях достаточной стабильности и надежности работы процессоров в форсированных режимах. Следствием же такого экстремального разгона стал рекорд производительности среди процессоров архитектуры и системы команд 80х86. Заметим здесь, что фирма KryoTech прославилась не только своими экспериментами с экстремальным разгоном процессоров. Широкую известность получили ее установки глубокого охлаждения компьютерных компонентов. Снабженные соответствующей электронной начинкой, они оказались востребованными в составе платформ высокопроизводительных серверов и рабочих станций. A компания AMD получила подтверждение высокого уровня своих изделий и богатый экспериментальный материал для дальнейшего совершенствования архитектуры процессоров. К слову сказать, аналогичные исследования проводились также с процессорами корпорации Intel, и в них был зафиксирован значительный прирост производительности.
2.2 Особенности эксплуатации модулей Пельтье
Кроме очевидных преимуществ, модули Пельтье обладают и рядом специфических свойств и характеристик, которые необходимо учитывать при их использовании в составе охлаждающих средств. Некоторые из них были уже отмечены, но для корректного применения модулей Пельтье требуют более детального рассмотрения.
К важнейшим характеристикам относятся следующие особенности эксплуатации: