Автор работы: Пользователь скрыл имя, 15 Февраля 2012 в 21:38, лекция
Как осуществляется взаимодействие двух зарядов? Что такое электрическое поле? Понятие разности потенциалов (или напряжения) прочно вошло не только в науку и технику, но и в обиходную жизнь. Каждый знает, что напряжение в сети городского тока является главной ее характеристикой. Это напряжение определяет текущий по электрической лампочке или по обмотке трансформатора телевизора ток и, следовательно, то количество энергии, которое поступает из сети.
Как же осуществляется взаимодействие двух зарядов? Первоначально полагали, что заряды непосредственно через пустоту действуют друг на друга. Каждый заряд на расстоянии «чувствует» присутствие другого. Это была так называемая «теория дальнодействия». Если переместить заряд В, то сила, действующая на заряд А, изменится, хотя никаких изменений с зарядом А и окружающим его пространством не произошло. Такое представление явно неудовлетворительно. Изменение силы с точки зрения «теории дальнодействия», можно воспринять только как «чудо». Правда, «чудо», подчиняющееся определенному количественному закону. Величайшей заслугой английского физика Майкла Фарадея - основоположника современных представлений об электромагнетизме-было то, что он ввел совершенно новое понятие - понятие электрического поля. Согласно его идее, заряды не действуют друг на друга непосредственно. Каждый из них создает в окружающем пространстве электрическое поле. Величина электрического поля убывает по мере удаления от заряда. На заряд А действует не сам заряд В, а созданное им поле.
Теперь не удивительно, что перемещение заряда В в новое положение меняет силу, действующую на заряда. Ведь при этом меняется поле заряда В в той точке, где расположен заряд А. Действие заряда передается в пространстве от точки к точке посредством электрического поля. В этом заключается «теория близкодействия». С ее появлением «теория дальнодействия» была оставлена.
Что же такое электрическое поле? Его существование в пространстве столь же достоверно, сколь и существование самих зарядов. Электрическое поле представляет собой особое, специфическое состояние материи. Мы не можем разъяснить, что такое поле, не рассказав, из чего оно состоит: ничего более простого, чем электрическое поле, мы не знаем, подобно тому как мы не знаем ничего более простого, чем элементарные частицы. Наше представление о том, что такое электрическое поле, образуется в результате опытного исследования свойств поля. Основное его свойство заключается в способности действовать на электрический заряд с определенной силой. По величине этой силы можно судить о величине поля. Помещая один и тот же электрический заряд в различные участки электрического поля, мы замечаем, что сила, действующая на него, будет меняться. Следовательно, величина поля в различных точках пространства будет различной. Принято характеризовать величину поля силой действующей на положительный заряд, равный единице. Эта характеристика поля называется напряженностью электрического поля. Распределение электрического поля в пространстве можно считать известным, если мы знаем напряженность поля в каждой точке. В учении об электричестве понятие поля играет основную роль. После введения представления о поле центр тяжести в исследовании электромагнитных процессов сосредоточивается уже не на изучении самих зарядов, а на изучении свойств пространства между ними, заполненного электрическим полем. В каждой точке пространства поле действует на положительный заряд с некоторой силой, имеющей определенное направление. Это направление принимается за направление поля. Силовой линией называется линия, касательная к которой в каждой точке указывает направление поля.
Электрическое поле непосредственно не действует на наши органы чувств. С этим, кстати, связаны некоторые затруднения при введении представлений о поле: ведь нелегко убедиться в реальности того, что мы непосредственно не ощущаем. Однако с помощью не очень сложного опыта мы можем сделать силовые линии «видимыми». Дело в том, что твердые продолговатые частицы гипса или другого не проводящего электричество вещества поворачиваются вдоль поля, располагаясь как раз по силовым линиям. Для полного успеха опыта нужно располагать электрической машиной, способной сообщить телам достаточно большой заряд. Чтобы силы трения не мешали частицам поворачиваться вдоль поля, их нужно поместить в жидкий изолятор, например в касторовое масло… Тела между которыми изучается иоле, расположены в ванночке с прозрачным дном. Возникающая в ванночке картина распределения силовых линий проектируется на экран с помощью объектива, двух зеркал и конденсатора.
Интересно, что электрически нейтральная в целом система из двух зарядов противоположных знаков создает в окружающем пространстве электрическое поле. Правда, в этом случае поле в основном сосредоточено между зарядами. Вне пространства между зарядами электрические силы сказываются слабо. Если при этом геометрические размеры зарядов значительно меньше расстояния между ними, то такая система называется электрическим диполем. Постоянное электрическое поле обладает одним важным свойством, позволяющим ввести еще одну величину, которая характеризует поле наряду с напряженностью. Работа, которую совершают силы электрического поля при перемещении заряда из одной точки пространства в другую, не зависит от формы выбранного пути.
Такие поля называются потенциальными. Потенциальным является поле тяготения Земли. Работа, которую надо совершить, чтобы поднять тело над Землей, не зависит от формы пути подъема, а определяется только начальным и конечным положением тела над Землей - высотой подъема. Следовательно, в электрическом поле работа при перемещении данного заряда целиком определяется характером поля и положением в пространстве начальной и конечной точек пути. В свою очередь электрическое поле вполне определено, если известна работа по перемещению единичного положительного заряда между двумя любыми точками в пространстве, занятом полем. Эта работа называется разностью потенциалов или напряжением (не путать с напряженностью!). Итак, электрическое поле можно характеризовать двумя величинами: либо заданием напряженности в каждой точке пространства, либо работой по перемещению единичного заряда между двумя любыми точками-разностью потенциалов. Напряженность - функция одной точки пространства; новая величина - разность потенциалов - функция двух точек. Обе величины однозначно связаны друг с другом так же, как работа и сила в механике. Возникает естественный вопрос: зачем вводить две характеристики поля, а не довольствоваться одной напряженностью? Тем более, что характеристика поля с помощью задания силы в каждой точке гораздо яснее и нагляднее. Все дело в том, что многие электрические явления, а главным образом величина электрического тока в цепи, зависят не от напряженности поля в какой-либо одной точке, а именно от разности потенциалов между двумя точками, например на концах проводника в случае тока. При падении тела с некоторой высоты для оценки результатов падения важно знать не силу, действующую на тело в какой-либо точке, а работу, совершенную силой тяжести на пути падения. Точно так же для определения эффекта, который может вызвать электрическое поле, чаще всего нужно знать работу, которую оно может совершить при перемещении заряда, а не силу, действующую на него в некоторой точке поля. Правда, зная величину поля в каждой точке пространства, мы всегда можем вычислить работу по перемещению заряда, но знание разности потенциалов означает, что эта работа известна. Вот почему понятие разности потенциалов (или напряжения) прочно вошло не только в науку и технику, но и в обиходную жизнь. Каждый из вас знает, что напряжение в сети городского тока является главной ее характеристикой. Это напряжение определяет текущий по электрической лампочке или по обмотке трансформатора телевизора ток и, следовательно, то количество энергии, которое поступает из сети.