Электронная микроскопия

Автор работы: Пользователь скрыл имя, 20 Ноября 2011 в 18:49, доклад

Описание

Методы электронной микроскопии завоевали такую популярность, что в настоящее время невозможно представить себе лабораторию, занимающуюся исследованием материалов, их не применяющую. Первые успехи электронной микроскопии следует отнести к 30-м годам, когда с ее помощью была выявлена структура ряда органических материалов и биологических объектов. В исследованиях неорганических материалов, в особенности металлических сплавов, позиции электронной микроскопии укрепились с появлением микроскопов с высоким напряжением (100 кВ и выше) и еще в большей мере благодаря совершенствованию техники получения объектов, позволившей работать непосредственно с материалом, а не со слепками-репликами. Именно так называемой просвечивающей электронной микроскопии обязана своим появлением и постоянным развитием теория дислокаций – механизма пластической деформации материалов. Прочные позиции занимает электронная микроскопия и в ряде других разделов материаловедения.

Работа состоит из  1 файл

ВВЕДЕНИЕ.doc

— 423.00 Кб (Скачать документ)

     1. Глаза должны полностью адаптироваться  к темноте. Для этого необходимо  провести по крайней мере 20 мин  в темноте.

     2. Положение и чистота находящихся  в поле линзы объективной диафрагмы и охлаждаемой диафрагмы критически влияют на требуемую установку стигматора. Никогда не трогайте ни ту, ни другую диафрагму после корректировки астигматизма до фотографирования изображения. Самое важное, что астигматизм не меняется во времени и его можно скорректировать. Небольшие загрязнения объективной диафрагмы не создают помех, которые нельзя скорректировать с помощью стигматора. Грязная диафрагма, создающая флуктуации поля, является более серьезной помехой. Проверяйте степень загрязнения диафрагмы объектива, смещая ее во время наблюдения изображения. При небольших смещениях диафрагмы не должно наблюдаться сильное ухудшение астигматизма. Чистоту отверстия охлаждаемой диафрагмы можно проверить при том увеличении, при котором она ограничивает поле зрения. Проверку производят небольшим перемещением охлаждаемой диафрагмы, если это возможно, проводя наблюдение при малом увеличении.

     3. Ток коррекции астигматизма изменяется  в зависимости от типа используемого  объектодержателя, ускоряющего напряжения  и тока возбуждения объективной линзы. Последний слегка зависит от увеличения, возможно, из-за магнитного взаимодействия линз.

     4. Часто встречающейся причиной  сильного астигматизма является  присутствие кусочка от расколовшегося  или частично испарившегося образца в полюсном наконечнике объектива.

     5. Нет смысла корректировать астигматизм  до тех пор, пока охлаждаемая  диафрагма не достигнет температуры  жидкого азота и пока резервуар  охлаждаемой диафрагмы приходится  периодически доливать жидким  азотом (лучше с помощью насоса). Астигматизм также быстро появляется, как только жидкий азот испаряется из резервуара, приводя к перемещению диафрагмы по мере ее нагрева. На стабилизацию температуры диафрагмы может потребоваться по крайней мере полчаса с момента начала заполнения резервуара.

     О чувствительности изображений высокого разрешения к астигматизму можно  судить, проводя наблюдение плоскостей графитизированного углерода в светлом  поле с ненаклоненным освещением и при этом регулируя стигматор. Чтобы получить изображения плоскостей решетки, расположенных во всевозможных направлениях, нужно точно скомпенсировать астигматизм по двум направлениям. Легче получить изображение плоскостей решетки одного направления, но оно не обеспечивает контроля точной коррекций астигматизма.

     Наконец стоит повторить, что астигматизм  нужно корректировать после каждого  перемещения диафрагмы объектива.   
 
 

     2.4 Вспомогательное  оборудование для  обычной просвечивающей  электронной микроскопии  высокого разрешения 

     Кроме самого микроскопа имеются различные вспомогательные устройства, дополняющие микроскоп, которые упоминались ранее в настоящей книге. В совокупности все они освещаются в этом параграфе.

     1.  Масс-спектрометр или манометр парциального давления являются чрезвычайно полезным дополнением к электронному микроскопу. Масс-спектрометр дает полный анализ продуктов загрязнения в микроскопе. В конструкциях некоторых приборов имеются магниты, такой прибор следует располагать с учетом возможного влияния на электронно-микроскопическое изображение.

     2.  Работая с высоким разрешением, полезно пользоваться балонным осушенным азотом. Микроскоп наполняется сухим азотом всякий раз, когда необходим внутренний ремонт для того, чтобы уменьшить количество водяных паров, проникающих в колонну.

     3.  Для калибровки увеличения прибора в условиях изменяющейся длины фокуса объективной линзы полезно использовать прибор для измерения тока объективной линзы.

     4.  Ввиду важности обеспечения термической стабильности при фотографировании темнопольных изображений с длительными экспозициями целесообразно иметь насос для перекачки жидкого азота.

     5.  Для сдувания с образца пыли или следов средств, оставшихся после чистки камеры пушки микроскопа, всегда полезно иметь резиновую грушу с соплом. 

3. ПРИМЕНЕНИЕ ПРОСВЕЧИВАЮЩЕГО  ЭЛЕКТРОННОГО МИКРОСКОПА

     Вряд  ли остался какой-либо сектор исследований в области биологии и материаловедения, где бы не применялась просвечивающая электронная микроскопия (ПЭМ); это  обеспечено успехами техники приготовления  образцов.

     Все применяемые в электронной микроскопии методики нацелены на получение предельно тонкого образца и обеспечение максимального контраста между ним и подложкой, которая необходима ему в качестве опоры. Основная методика рассчитана на образцы толщиной 2 – 200 нм, поддерживаемые тонкими пластмассовыми или углеродными пленками, которые кладутся на сетку с размером ячейки около 0,05 мм. (Подходящий образец, каким бы способом он ни был получен, обрабатывается так, чтобы увеличить интенсивность рассеяния электронов на исследуемом объекте.) Если контраст достаточно велик, то глаз наблюдателя может без напряжения различить детали, находящиеся на расстоянии 0,1 – 0,2 мм друг от друга. Следовательно, для того, чтобы на изображении, создаваемом электронным микроскопом, были различимы детали, разделенные на образце расстоянием в 1 нм, необходимо полное увеличение порядка 100 – 200 тыс. Лучшие из микроскопов могут создать на фотопластинке изображение образца с таким увеличением, но при этом изображается слишком малый участок. Обычно делают микроснимок с меньшим увеличением, а затем увеличивают его фотографически. Фотопластинка разрешает на длине 10 см около 10 000 линий. Если каждая линия соответствует на образце некой структуре протяженностью 0,5 нм, то для регистрации такой структуры необходимо увеличение не менее 20 000, тогда как при помощи ПЭМ, может быть разрешено около 1000 линий. 

     3.1 Небиологические  материалы 

     Главной целью электронной микроскопии  высокого разрешения на сегодняшний  день является визуализация деталей  ультраструктуры несовершенных кристаллических материалов. В настоящее время не существует других методов, способных давать такую информацию на атомном уровне разрешения или на уровне разрешения элементарной ячейки. Детальное понимание структуры дефектов кристаллов определяет прогресс как в кристаллохимии, так и в области исследования прочности материалов. Используя электронный пучок для управления скоростью протекания химической реакции в кристаллах, можно также почти на атомном уровне изучать движение дефектов при фазовых переходах. Электронная микроскопия высокого разрешения- находит также широкое применение для исследования микроструктуры очень маленьких кристаллов, от которых нельзя получить картину рентгеновской дифракции. В последние годы этот метод широко применяется для исследования минералов и керамических материалов.

     Исследования  минералов методом реплик начались несколько десятков лет назад. Непосредственно  методом просвечивающей электронной  микроскопии первыми были изучены  слюда и глинистые минералы. Среди  первых минералогов, которые использовали электронную микроскопию в своих исследованиях, можно назвать Риббе, Мак-Коннела и Флита [5]. Большое влияние на развитие электронной микроскопии применительно к минералогии оказали работы Мак-Ларена и Фейки (с 1965 г.) и Ниссена (с 1967 г.); программа их исследований была целиком посвящена электро-микроскопическому исследованию минералов. В 1970 г. работы по исследованию лунных материалов методами ТЭМ способствовали возникновению необыкновенного бума в электронной микроскопии минералов, в который наряду с минералогами были вовлечены материаловеды и физики. Полученные ими в течение пяти лет результаты, оказавшие колоссальное влияние на современную минералогию, показали, что электронная микроскопия является очень мощным инструментом в руках ученого. К настоящему времени новые данные внесли весомый вклад в расшифровку строения полевых шпатов и пироксенов, и почти в каждой группе минералов исследования с помощью электронной микроскопии раскрывают ряд неожиданных свойств.

     Электронная микроскопия применялась также для определения возраста земных, лунных и метеоритных пород. При этом было использовано то обстоятельство, что во время радиоактивного распада ядра высвобождаются частицы, проникающие в окружающий материал с высокой скоростью и оставляющие видимый "след" в кристалле. Такие треки можно увидеть с помощью электронного микроскопа, используя его в режимах сканирования или на просвет. Плотность треков распада вокруг радиоактивного включения пропорциональна возрасту кристалла, а их длина является функцией энергии частицы. Длинные треки, указывающие на высокую энергию частиц, были обнаружены вокруг включений витлокита в лунной породе; Хатчеон и Прайс приписали этот необычайно длинный трек распаду элемента 244Ро, который из-за короткого периода полураспада к настоящему времени исчез, но еще мог существовать 4 млрд. лет назад. Треки в материале, взятом с поверхности Луны или из метеоритов (рис. 7) [5], дают информацию об эволюции космической радиации и позволяют сделать выводы о возрасте и составе Вселенной.

     Высокая плотность треков вызвана наличием энергетически более тяжелых  ядер (главным образом Fе) в солнечной  вспышке перед образованием метеорита. Примечательна таблитчатчатая структура, обусловленная распадом твердых  растворов. 

     

     Рисунок 7 – Темнопольная ТЭМ-картина зерна пироксена из метеорита Пезиано

     ПЭМ применяется в исследованиях  материалов для изучения тонких кристаллов и границ между разными материалами. Чтобы получить изображение границы  раздела с большим разрешением, образец заливают пластмассой, делают срез образца, перпендикулярный границе, а затем утоньшают его так, чтобы граница была видна на заостренной кромке. Кристаллическая решетка сильно рассеивает электроны в определенных направлениях, давая дифракционную картину. Изображение кристаллического образца в значительной мере определяется этой картиной; контраст сильно зависит от ориентации, толщины и совершенства кристаллической решетки. Изменения контраста на изображении позволяют изучать кристаллическую решетку и ее несовершенства в масштабе атомных размеров. Получаемая при этом информация дополняет ту, которую дает рентгенографический анализ объемных образцов, так как ЭМ дает возможность непосредственно видеть во всех деталях дислокации, дефекты упаковки и границы зерен. Кроме того, в ЭМ можно снимать электронограммы и наблюдать картины дифракции от выделенных участков образца. Если диафрагму объектива настроить так, чтобы через нее проходили только один дифрагированный и нерассеянный центральный пучки, то можно получать изображение определенной системы кристаллических плоскостей, которая дает этот дифрагированный пучок. Современные приборы позволяют разрешать периоды решетки величиной 0,1 нм. Исследовать кристаллы можно также методом темнопольного изображения, при котором перекрывают центральный пучок, так что изображение формируется одним или несколькими дифрагированными пучками. Все эти методы дали важную информацию о структуре очень многих материалов и существенно прояснили физику кристаллов и их свойства. Например, анализ ПЭМ-изображений кристаллической решетки тонких малоразмерных квазикристаллов в сочетании с анализом их электронограмм позволил в 1985 открыть материалы с симметрией пятого порядка.   

     3.2 Биологические препараты 

     Электронная микроскопия широко применяется  в биологических и медицинских исследованиях. Разработаны методики фиксации, заливки и получения тонких срезов тканей для исследования в ОПЭМ. Эти методики дают возможность исследовать организацию клеток на макромолекулярном уровне. Электронная микроскопия выявила компоненты клетки и детали строения мембран, митохондрий, эндоплазматической сети, рибосом и множества других органелл, входящих в состав клетки. Образец сначала фиксируют глутаральдегидом или другими фиксирующими веществами, а затем обезвоживают и заливают пластмассой. Методы криофиксации (фиксации при очень низких – криогенных – температурах) позволяют сохранить структуру и состав без использования химических фиксирующих веществ. Кроме того, криогенные методы позволяют получать изображения замороженных биологических образцов без их обезвоживания. При помощи ультрамикротомов с лезвиями из полированного алмаза или сколотого стекла можно делать срезы тканей толщиной 30 – 40 нм. Смонтированные препараты могут быть окрашены соединениями тяжелых металлов (свинца, осмия, золота, вольфрама, урана) для усиления контраста отдельных компонентов или структур.

     Биологические исследования были распространены на микроорганизмы, особенно на вирусы, которые  не разрешаются световыми микроскопами. ПЭМ позволила выявить, например, структуры бактериофагов и расположение субъединиц в белковых оболочках вирусов. Кроме того, методами позитивного и негативного окрашивания удалось выявить структуру с субъединицами в ряде других важных биологических микроструктур. Методы усиления контраста нуклеиновых кислот позволили наблюдать одно- и двунитные ДНК. Эти длинные линейные молекулы распластывают в слой основного белка и накладывают на тонкую пленку. Затем на образец вакуумным напылением наносят очень тонкий слой тяжелого металла. Этот слой тяжелого металла "оттеняет" образец, благодаря чему последний при наблюдении в ОПЭМ выглядит как бы освещенным с той стороны, с которой напылялся металл. Если же вращать образец во время напыления, то металл накапливается вокруг частиц со всех сторон равномерно (как снежный ком).  

     3.3 Высоковольтная микроскопия 

     В настоящее время промышленность выпускает высоковольтные варианты ОПЭМ с ускоряющим напряжением от 300 до 400 кВ. Такие микроскопы имеют  более высокую проникающую способность, чем у низковольтных приборов, причем почти не уступают в этом отношении микроскопам с напряжением 1 млн. вольт, которые строились в прошлом. Современные высоковольтные микроскопы достаточно компактны и могут быть установлены в обычном лабораторном помещении. Их повышенная проникающая способность оказывается очень ценным свойством при исследовании дефектов в более толстых кристаллах, особенно таких, из которых невозможно сделать тонкие образцы. В биологии их высокая проникающая способность дает возможность исследовать целые клетки, не разрезая их. Кроме того, с помощью таких микроскопов можно получать объемные изображения толстых объектов.  

     3.4 Радиационное повреждение 

     Поскольку электроны представляют собой ионизирующее излучение, образец в ЭМ постоянно  подвергается его воздействию. Следовательно, образцы всегда подвергаются радиационному повреждению. Типичная доза излучения, поглощаемая тонким образцом за время регистрации микрофотографии в ОПЭМ, примерно соответствует энергии, которой было бы достаточно для полного испарения холодной воды из пруда глубиной 4 м с площадью поверхности 1 га. Чтобы уменьшить радиационное повреждение образца, необходимо использовать различные методы его подготовки: окрашивание, заливку, замораживание. Кроме того, можно регистрировать изображение при дозах электронов, в 100 – 1000 раз меньших, нежели по стандартной методике, а затем улучшать его методами компьютерной обработки изображений. 
 

Информация о работе Электронная микроскопия