Энергия - источник благосостояния

Автор работы: Пользователь скрыл имя, 23 Февраля 2012 в 15:40, реферат

Описание

Результаты исследований показывают, что тепловое загрязнение и воды, и атмосферы нарушает жизнедеятельность экосистем. Кроме того, тепловые электростанции – источник колоссального количества углекислого газа, двуокиси серы и других газов, загрязняющих атмосферу. Все это означает, что производство энергии на тепловых станциях – не самый лучший и эффективный способ производства энергии. В этой связи продолжается поиск более эффективных источников энергии.

Содержание

1. Естественно научное понимание энергии
2. Энергия - источник благосостояния
3. Преобразование и потребление энергии
3.1. Способы преобразования энергии
3.2. Химические процессы и преобразование энергии
4. Эффективность производства и потребления энергии
5. Тепловые электростанции
6. Источник

Работа состоит из  1 файл

физика срс1 энергия.docx

— 96.32 Кб (Скачать документ)

ПЛАН

  1. Естественно научное понимание энергии
  1. Энергия - источник благосостояния

  1. Преобразование и потребление энергии
    1. Способы преобразования энергии

    1. Химические  процессы и преобразование энергии

  1. Эффективность производства и потребления энергии

  1. Тепловые  электростанции

  1. Источник 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Естественно научное понимание энергии

Слово «энергия» в переводе с греческого означает действие, деятельность. Согласно современным представлениям энергия – это общая количественная мера различных форм движения материи. Существуют качественно разные физические формы движения материи, способные взаимно превращаться. В середине XX в. было установлено важное свойство материи: все ее формы движения превращаются друг в друга в строго определенных отношениях. Именно такое свойство и позволило ввести понятие энергии как общей меры движения материи. 
Превращение энергии подчиняется фундаментальному закону сохранения, из которого следует невозможность создания вечного двигателя. В большинстве случаев полезная работа совершается только в результате определенных изменений состояния окружающих тел или систем (горения топлива, падения воды и т. п.). Работоспособность тела, т. е. способность его совершать определенную работу при переходе из одного состояния в другое, определяется энергией. Различным формам физического движения соответствуют различные виды энергии: механическая, тепловая, химическая, электромагнитная, гравитационная, ядерная и т. д. Однако способность движения материи к взаимным превращениям придает данным видам энергии условный характер. Движение – неотъемлемое свойство материи, поэтому все виды энергии всегда локализованы в определенных материальных объектах. 
Энергия характеризует способность материальных объектов совершать работу, а работа производится при действии на объект физической силы. Значит, работа – это энергия в действии. Движется автомобиль, скользят санки по склону горы, набегающая волна приподнимает плот и т. д. – все это примеры совершаемой работы, энергии в действии. 
Уровень развития современного общества во многом определяется производством и потреблением энергии. Благодаря потреблению энергии движется транспорт, улетают в космос ракеты, готовится пища, обогреваются жилища и приводятся в действие кондиционеры, освещаются улицы и т. д. Можно сказать: окружающий нас мир заполнен энергией, которая может быть использована для совершения различных видов работы. Энергией обладают люди и животные, камни и растения, ископаемое топливо и деревья, реки и озера, Мировой океан и т. п.

  1. Энергия - источник благосостояния

В последнее время как  никогда, обсуждается вопрос: что  ждет человечество – энергетический голод или энергетическое изобилие? На страницах газет и журналов все чаще появляются статьи об энергетическом кризисе. Стремление обладать источником энергии (обычно нефти) приводит к возникновению  войн. Газетными сенсациями стали  сообщения о запуске новых  энергетических установок и новые  изобретения в области энергетики. Предлагаются гигантские энергетические программы, рассчитанные на привлечение  огромных материальных ресурсов. 
Если в конце XIX века самая распространенная сейчас энергия – электрическая – играла вспомогательную и незначительную роль, то уже в 1930 г. во всем мире было произведено около 300 млрд кВт. ч электроэнергии. Вполне реален прогноз, согласно которому в 2002 г. будет произведено 30 тыс. млрд кВт·ч! Гигантские цифры, небывалые темпы роста! И все равно энергии мало, потребности в ней растут быстро. 
Развитие экономики, уровень материального благосостояния, людей находится в прямой зависимости от количества потребляемой энергии. Многие виды трудовой деятельности основаны на потреблении энергии. Для добычи руды, выплавки из нее металла, для строительства дома и т. д., нужна энергия. Потребности людей постоянно растут, потребителей энергии становится все больше – все это приводит к необходимости увеличения объемов производимой энергии. 
Природные энергоресурсы могут быть одним из основных источников процветания жизни. В качестве примера можно назвать нефть, добываемую в Арабских Эмиратах. Эту когда-то отсталую страну нефтяные энергоресурсы вывели на современный уровень развития. Построены большие города, по внешнему облику и инфраструктуре очень похожие на многие города такой развитой страны, как США. Проезжая, например по городу Абу-Даби – столице Арабских Эмиратов, утопающей в ковровой зелени и многокрасочных цветах, – трудно поверить, что этот город, как и многие другие города Эмиратов, вырос на пустынной земле, сквозь песчаную толщу которой с большим трудом пробивается верблюжья колючка. Такие города – эдемские уголки Арабских Эмиратов – выросли очень быстро, за каких-то двадцать-тридцать лет. Было бы ошибочно думать, что только благодаря нефти – основному источнику энергии – можно преобразовать пустынную землю. Продуманное государственное управление вместе с хорошо отлаженной системой образования, включающей религиозное воспитание, играют при этом не менее важную роль в развитии Арабских Эмиратов. 
Из фундаментального закона природы следует, что пригодную для потребления энергию можно получить из других форм энергии в результате их преобразования. Вечные двигатели, якобы производящие энергию и ниоткуда ее не берущие, к сожалению, невозможны. А структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из каждых пяти произведенных киловатт электроэнергии получаются в принципе тем же способом, которым пользовался первобытный человек для согревания, т. е. при сжигании топлива или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых электростанциях. Конечно, способы сжигания топлива стали намного сложнее и совершеннее. Новые факторы – возросшие цены на нефть, быстрое развитие атомной энергетики, возрастание требований к защите окружающей среды – потребовали нового подхода к энергетике. 
В основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на невозобновляемых ресурсах. Однако структура ее изменится. Сократится потребление нефти. Существенно возрастет производство электроэнергии на атомных электростанциях. Начнется разработка пока еще не тронутых гигантских запасов дешевого угля, например, в Кузнецком, Канско-Ачинском, Экибастузском бассейнах. Будет широко применяться природный газ, запасы которого в нашей стране сравнительно велики. 
К сожалению, запасы нефти, газа, угля отнюдь небезграничны. В естественных условиях они формировались миллионы лет, а будут израсходованы за сотни лет. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств. Лишь при экономном, рачительном потреблении природных ресурсов их может хватить на века. К сожалению, многие страны живут сегодняшним днем, добывая в большом количестве подаренные им природой богатства. Многие из таких стран, особенно в районе Персидского залива, буквально купаются в золоте, не задумываясь над тем, что через несколько десятков лет земные запасы иссякнут. Что же произойдет тогда – а это рано или поздно случится, – когда месторождения нефти и газа будут исчерпаны? При этом следует иметь в виду, что и нефть, и газ потребляет не только энергетика, но и транспорт, и химическая промышленность. Ответ очевиден – поиск новых источников энергии. Ученые, инженеры еще с давних времен занимаются поиском новых, нетрадиционных источников, которые могли бы обеспечить человечество энергией. Возможны разные пути решения данной проблемы. Самый очевидный путь – использование вечных, возобновляемых источников энергии – энергии текущей воды и ветра, океанских приливов и отливов, тепла земных недр, Солнца. Можно назвать еще один заманчивый путь – управляемый термоядерный синтез, над освоением которого усердно работают ученые многих стран.

  1. Преобразование и потребление энергии
      1. Способы преобразования энергии

Можно назвать три основных способа преобразования энергии. Первый из них заключается в получении тепловой энергии при сжигании топлива (ископаемого или растительного происхождения) и потреблении ее для непосредственного обогревания жилых домов, школ, предприятий и т. п. Второй способ – преобразование заключенной в топливе тепловой энергии в механическую работу, например, при использовании продуктов перегонки нефти для обеспечения движения различного оборудования, автомобилей, тракторов, поездов, самолетов и т. д. Третий способ – преобразование тепла, высвобождающегося при сгорании топлива или деления ядер, в электрическую энергию с последующим ее потреблением либо для производства тепла, либо для выполнения механической работы. 
Электроэнергия получается и при преобразовании энергии падающей воды. Электроэнергия таким образом играет роль своеобразного посредника между источниками энергии и ее потребителями (рис. 9.1). Как посредник на рынке ведет к повышению цен, так и потребление энергии в форме электричества приводит к росту цен из-за потерь при преобразовании одного вида энергии в другой. В то же время преобразование различных форм энергии в электрическую удобно, практично, а иногда это единственно возможный путь реального потребления энергии. В ряде случаев просто невозможно эффективно использовать энергию, не превратив ее в электрическую. До открытия электричества энергия падающей воды (гидроэнергия) применялась для обеспечения движения механических устройств: прядильных машин, мельниц, лесопилок и т. д. После преобразования гидроэнергии в электрическую сфера применения значительно расширялась, стало возможным ее потребление на значительных расстояниях от источника. Энергию деления ядер урана, например, невозможно непосредственно использовать без превращения ее в электрическую. 

Ископаемые виды топлива, в отличие от гидроисточников, долгое время применялись лишь для отопления и освещения, а не для работы различных механизмов. Дрова и уголь, а нередко и высушенный торф сжигались для обогрева жилых домов, общественных и промышленных зданий. Уголь, кроме того, применялся и применяется для выплавки металла. Угольное масло, полученное путем перегонки угля, заливалось в лампы. Только после изобретения паровой машины в XVIII в. был по-настоящему раскрыт потенциал данного ископаемого топлива, ставшего источником не только тепла и света, но и движения различных механизмов и машин. Появились паровозы, пароходы с паровыми двигателями, работавшие на угле. В начале XX в. уголь начали сжигать в топках котлов электростанций для производства электроэнергии. 
В настоящее время ископаемое топливо играет исключительно важную роль. Оно дает тепло и свет, является одним из основных источников электроэнергии и механической энергии для обеспечения огромного парка многочисленных машин и различных видов транспорта. Не следует забывать, что ископаемое органическое сырье в огромных количествах потребляется химической промышленностью для производства большого многообразия полезной и ценной продукции.

      1. Химические процессы и преобразование энергии

Еще в недалеком прошлом  во многих странах основным источником энергии был каменный уголь. Однако с течением времени добыча нефти  возрастала, и к середине XX в. потребление  нефти и угля сравнялось. Трехкратное  увеличение населения в XX в. сопровождалось приблизительно десятикратным увеличением потребления всех видов энергии. 
Химические процессы – сжигание нефти, природного газа и угля – обеспечивают производство значительной доли энергии во всем мире. При преобразовании световой и тепловой энергии в электрическую химические процессы также неизбежны. Химические технологии лежат в основе создания высококачественных теплоносителей и термостойких материалов для современных энергетических установок. Все это означает, что прогресс в развитии энергетики во многом зависит от достижений современной химии. 
Первой энергетической установкой промышленного масштаба была паровая машина, созданная во второй половине XVIII в. английским изобретателем Джеймсом Уаттом (1736–1819). Тепловая энергия в ней превращалась в механическую работу. С паровой машиной долгое время конкурировало водяное колесо. Гораздо позднее – к середине XIX в. – была создана гальваническая батарея – первый источник электрического тока. В поисках более эффективных источников тока для телеграфной связи в 1866 г. немецкий электрик Вернер Сименс (1816–1892) изобрел динамомашину – генератор тока, ставший отправной точкой для новых исследований и разработок многочисленных источников электрического тока. Электроэнергия в те времена производилась в небольших количествах и была слишком дорогой. Так, например, алюминий и магний, полученные электрохимическим путем в середине XIX в., стоили дороже золота и платины. С модернизацией генератора электрического тока энергия постепенно дешевела, что способствовало бурному развитию химической промышленности. 
При превращении электрической энергии в тепловую была достигнута температура примерно 3500° С. Такую высокую температуру не удавалось получить ранее никакими другими способами. Только с применением электроэнергии были реализованы методы восстановления металлов и выплавлены в чистом виде многие металлы, а также синтезированы не существующие в природных условиях соединения металлов с углеродом – карбиды. На химических заводах, кроме того, стало возможным осуществлять электрохимическое разложение вещества в крупных промышленных масштабах. Так открывались новые пути развития разных отраслей химической промышленности, производящей многообразные синтетические неорганические вещества. 
В настоящее время химическая промышленность – одна из самых энергоемких отраслей. Количество энергии, необходимое для промышленного производства различной продукции, зависит от ее вида, что наглядно представлено на рис. 9.2, где даны энергозатраты Q, выраженные в тоннах природной нефти на 1 т продукта. Например, для производства 1 т карбида кальция или хлора требуется не менее 3500 кВт электроэнергии. Расход электроэнергии на производство алюминия и магния равен 14–18 кВт на 1 т. В общих затратах на производство многих видов промышленной продукции на долю электроэнергии приходится 18–25%. Для карбида кальция затраты на электроэнергию составляют почти половину его себестоимости, для поливинилхлорида и полиэтилена – 35–50%, для ацетальдегида – даже 45–70%. С каждой тонной азотного удобрения в землю «закапывается» почти 14 000 кВт энергии. 

Быстрое развитие химической промышленности и материального  производства вообще требует не только роста   выработки электроэнергии, но все в большей степени ее рационального потребления.

  1. Эффективность производства и потребления энергии

Долгое время невысокая  эффективность преобразования тепловой энергии в полезную работу связывалась  с несовершенством самого механизма  преобразования. С развитием термодинамики  стало ясно, что существует ограничение  полного преобразования всей тепловой энергии в полезную работу. Такое  ограничение следует из фундаментальных  законов термодинамики и обусловливается  необратимостью тепловых процессов. К  настоящему времени значительная часть  всевозможных усовершенствований, направленных на повышение эффективности производства электроэнергии с использованием пара, в основном уже осуществлена. Если КПД первых паровых машин составлял 2–5%, то КПД современных энергетических систем – тепловых элетростанций, работающих на том или ином виде топлива и вырабатывающих пар для последующего преобразования его энергии посредством турбогенератора в электрическую, – достигает около 40%. Атомные электростанции также вырабатывают пар, подаваемый в турбогенераторы. КПД их не превышает 32%, а это означает, что только 32% тепловой энергии, выделяющейся при делении урана, преобразуется в электрическую. 
Производство электрической энергии даже с применением современных энергетических систем сопровождается большими потерями тепла. Особенно велики потери тепла, когда электрическая энергия снова преобразуется в тепло либо другие виды энергии на месте потребления. Существенными потерями сопровождается и передача электроэнергии, особенно на большие расстояния. В последние десятилетия интенсивно ведутся работы по синтезу электропроводящих материалов проводников для передачи электроэнергии с минимальными потерями. Уже синтезированы высокотемпературные сверхпроводящие материалы. Однако для передачи электроэнергии нужны такие проводники, сверхпроводящее свойство которых проявлялось бы не при низких, а при обычных температурах. 
К большим потерям приводит и потребление электроэнергии в химической промышленности. Например, энергетический КПД для процесса синтеза аммиака составляет 25–42%, хотя потребление энергии для такого процесса за последние 50–60 лет уменьшилось более чем на 50%. Для обычных способов получения винилхлорида он равен 12%, а для его синтеза из NO – всего лишь 5–6,5%. В большинстве случаев высокотемпературные процессы сопровождаются потерями энергии до 60–70%. Потери энергии в химическом производстве обусловливаются вполне объяснимыми объективными факторами, связанными с уровнем развития не только химических технологий, но и естествознания в целом. Однако есть и субъективные причины. Одна из них – очень часто разрабатываются методы превращения веществ с высоким процентом выхода конечной продукции без учета энергетической эффективности технологических процессов. В данной связи многие технологические процессы имеют сравнительно высокий процент выхода конечной продукции, но низкий энергетический КПД. 
Повышение энергетического КПД процессов и аппаратов – одна из важнейших задач совершенствования химической технологии. Возможны разные способы ее решения – улучшение условий химических реакций, уменьшение числа стадий технологического процесса, осуществление реакций при невысоких, т. е. обычных температурах и давлениях, приближение химических процессов к биологическим и, наконец, разработка новых технологических приемов. 
Проблема энергосбережения охватывает не только химические процессы, но и весь технологический цикл производства конечного продукта, включающий весьма важные стадии – добычу и первичную переработку природного сырья. 
Новые методы, модифицированные установки и аппараты, новейшие технологии позволяют постепенно решать проблему энергосбережения. Конечно, на всех действующих предприятиях всеми возможными мерами необходимо сокращать бесполезное рассеяние энергии. Такие меры известны: это оптимизация производственных процессов, утилизация рассеянного тепла, улучшение изоляции и герметичности, оптимизация процессов испарения и конденсации и т. д. Сохранение энергетических ресурсов – неотъемлемая и значимая задача всех отраслей материального производства.

Информация о работе Энергия - источник благосостояния