Энергосберегающие технологии

Автор работы: Пользователь скрыл имя, 01 Июня 2012 в 10:02, реферат

Описание

Современное общество зависит от электроэнергии, являющейся главным видом доступной энергии, а большая часть электроэнергии производится с использованием невозобновляемых ресурсов. Электричество используется в быту и на производстве для освещения и отопления, а также в технологических процессах. Энергетические ресурсы — это любые источники механической, химической и физической энергии. Их можно классифицировать по источникам и местоположению, скорости исчерпания, возможности самовосстановления и другим признакам

Содержание

1. Введение……………………………………………….………3
2. Основная часть……….…………………………………….….3
2.1. Энергосбережение…..…………………………….…..3
2.2. Возобновимые источники энергии…………………..4
2.2.1. Энергия солнца…………………………….…6
2.2.2. Энергия ветра….…………………………...…7
2.2.3. Энергия воды….…………………………....…8
2.2.4. Геотермальная энергия………………………10
2.2.5. Энергия биомассы….……………………...…11
2.3. Атомная энергия………………………………………11
2.4. Термоядерная энергия………………………...……13
3. Заключение…………...……………………………………..…14
4. Список литературы…..……………………………………..…15

Работа состоит из  1 файл

Энергосб.техн.doc

— 274.00 Кб (Скачать документ)
      1. Энергия воды

    Гидроэнергетика дает почти треть электроэнергии, используемой во всем мире. Существуют два основных метода преобразования энергии воды в электроэнергию.[2]

    На  гидроэлектростанциях (ГЭС) и гидроаккумулирующих  электростанциях (ГАЭС) используется потенциальная  энергия воды, накапливаемой с  помощью плотин. У основания плотины расположены гидротурбины, приводимые во вращение водой (которая подводится к ним под нормальным давлением) и вращающие роторы генераторов электрического тока. Существуют очень крупные ГЭС. Широко известны две большие ГЭС в России: Красноярская (6000 МВт) и Братская (4100 МВт). Самая крупная ГЭС в США – Грэнд-Кули полной мощностью 6480 МВт.

    Гидроэнергия  – один из самых дешевых и самых  чистых энергоресурсов. Он возобновляем в том смысле, что водохранилища пополняются приточной речной и дождевой водой. Остается под вопросом целесообразность строительства ГЭС на равнинах. [4]

    Этот  метод имеет преимущества: не загрязняет атмосферу, легко управляется прием  поворота механизированного клапана на подаче воды. Однако гидроэнергетика не безвредна для окружающей среды, имеются трудности в широком развитии гидроэлектрических ресурсов. Требуется накопление больших объемов воды, затопление долин и обширных площадей земли, часто ценной для коммерческого использования и для отдыха людей, или ненарушенных заповедных земель, в которых происходят нежелательные экологические изменения.[2]

    Существуют  приливные электростанции, в которых  используется перепад уровней воды, образующийся во время прилива и отлива. Для этого отделяют прибрежный бассейн невысокой плотиной, которая задерживает приливную воду при отливе. Затем воду выпускают, и она вращает гидротурбины. Приливные электростанции могут быть ценным энергетическим подспорьем местного характера, но на Земле не так много подходящих мест для их строительства, чтобы они могли изменить общую энергетическую ситуацию.[4]

    Средняя высота прилива составляет всего  лишь 0,5 м, за исключением тех случаев, когда водные массы перемещаются в относительно узких пределах. В таких случаях возникает волна, высота которой может в 10—20 раз превышать нормальную высоту приливного подъема. Возможное воздействие приливных электростанций на окружающую среду будет связано с увеличением амплитуды приливов на океанской стороне плотины. Это может приводить к затоплению суши и сооружений при высоких приливах или во время штормов и к вторжению соленой воды в устья рек и подземные водоносные слои. [2] 

    2.2.4. Геотермальная энергия

      Геотермальная энергия, т.е. теплота недр Земли, уже используется в ряде стран, например в Исландии, России, Италии и Новой Зеландии. Земная кора толщиной 32–35 км значительно тоньше лежащего под ней слоя – мантии, простирающейся примерно на 2900 км к горячему жидкому ядру. Мантия является источником богатых газами огненно-жидких пород (магмы), которые извергаются действующими вулканами. Тепло выделяется в основном вследствие радиоактивного распада веществ в земном ядре. Температура и количество этого тепла столь велики, что оно вызывает плавление пород мантии. Горячие породы могут создавать тепловые «мешки» под поверхностью, в контакте с которыми вода нагревается и даже превращается в пар.

      Запасы  геотермальной энергии составляют 200 ГВт. Геотермальные ресурсы распределены неравномерно, и основная их часть сосредоточена в районе Тихого океана. Геотермальная энергия может быть использована двумя основными способами: для выработки электроэнергии и для обогрева домов, учреждений и промышленных предприятии. Для какой из этих целей она будет использоваться зависит от формы в которой она поступает в наше распоряжение. Иногда вода вырывается из-под земли в виде чистого "сухого пара" т.е. пара без примеси водяных капелек. Этот сухой пар может быть непосредственно использован для вращения турбины и выработки электроэнергии.[2]

      Основным  недостатком геотермальной энергии  является то, что ее ресурсы локализованы и ограничены, если изыскания не показывают наличия значительных залежей  горячей породы или возможности  бурения скважин до мантии. Существенного  вклада этого ресурса в энергетику можно ожидать только в локальных географических зонах. [4]

      Кроме того, применение геотермальных вод не может рассматриваться как экологически чистое потому, что пар часто сопровождается газообразными выбросами, включая сероводород и радон -оба считаются опасными. [2] 
 
 
 

    2.2.5. Энергия биомассы.

    Многообещающим  направлением представляется выращивание  растений, идущих в переработку для  производства энергии, на маргинальных землях, не задействованных в производстве продуктов питания. Сегодня на дрова и древесный уголь приходится 12% мирового производства энергии. В перспективе использование энергии биомассы увеличится. Уже разработана технология получения этанола из древесины, который будет стоить 2,8 дол. за 1 л и снизит потребность в бензине. [2]

    Быстрорастущие  водяные растения способны давать до 190 т сухого продукта с гектара  в год. Такие продукты можно сжигать  в качестве топлива или пускать  на перегонку для получения жидких или газообразных углеводородов. Их стоимость ненамного превышает стоимость обычных ископаемых энергоносителей. При правильном ведении хозяйства такой энергоресурс может быть восполняемым. Необходимы дополнительные исследования, особенно быстрорастущих культур и их рентабельности с учетом затрат на сбор, транспортировку и размельчение. [4]

    Если  производство биомассы соизмеримо с  ее сжиганием, содержание углекислого  газа в атмосфере остается неизменным. Наиболее оптимальный способ использования  биомассы — ее газификация с последующим  срабатыванием в газовых турбинах. Наиболее перспективными областями применения таких турбогенераторов уже в ближайшем будущем могут стать отрасли экономики, в которых скапливаются большие объемы. При этом число выбросов углекислого газа сократилось бы наполовину.[2] 

    2.3. Атомная энергия

    Ядерная энергия образуется в результате преобразования массы в энергию  в соответствии с законом Эйнштейна: Е = mc2. Большинство существующих ядерных станций получает энергию в результате расщепления изотопа урана — уран-235. Тепло, освобождающееся при расщеплении, используется для выработки водяного пара, направляемого к турбинам, которые вырабатывают электроэнергию в основном таким же образом, как на тепловых электростанциях. Их конкурентоспособность в конкретных ситуациях зависит от стоимости и доступности другого топлива, уровня заменяемости других источников отопления и в возрастающей степени — от приемлемости атомных станций для основной массы населения.[2]

    Атомные электростанции (АЭС) точно так же загрязняют окружающую среду, как и  электростанции, работающие на ископаемом топливе. Но если выбросы обычных электростанций включают уже привычные нам химические соединения, то выбросы АЭС включают радиоактивные элементы, которые почти полностью являются продуктами реакций деления.[2]

    Даже  самые строгие критики атомной энергетики не могут не признать, что в легководных ядерных реакторах ядерный взрыв невозможен. Однако существуют другие четыре проблемы: возможность (взрывного или приводящего к утечке) разрушения защитной оболочки реактора, радиоактивные выбросы (низкого уровня) в атмосферу, транспортировка радиоактивных материалов и длительное хранение радиоактивных отходов. Если активную зону реактора оставить без охлаждающей воды, то она быстро расплавится. Это может привести к взрыву пара и выбросу в атмосферу радиоактивных «осколков» ядерного деления. Правда, разработана система аварийного охлаждения активной зоны реактора, которая предотвращает расплавление, заливая активную зону водой в случае аварии в первом контуре реактора.[4]

    В целом при нормальных условиях атомные силовые станции не создают значительного загрязнения воздуха. Они способны удовлетворить возрастающие в будущем потребности в энергии, заменяя виды топлива, сильно загрязняющие атмосферу, и сохраняя их как сырье для промышленности, например для производства пластмасс, лекарств и сложных химических соединений или для переработки в топливо для транспортных средств. С другой стороны, возможность случайных выделений радиоактивности все еще вызывает опасения, вследствие чего популярность атомных станций достаточно низка, что тормозит осуществление программы ядерной энергетики как в Европе, так и в Северной Америке. В дополнение к этому запасы урана, так же как угля и нефти, ограничены и, вероятно, будут истощены через несколько столетий.[2] 
 

    2.4. Термоядерная энергия

    В современном мире, где потребности  в энергии быстро растут и уже  начинают превышать потенциал поставок, ученые всего мира пытаются овладеть энергией Солнца и звезд и использовать этот ресурс для удовлетворения растущего  спроса.[6]

     Термоядерный реактор с условным названием ТОКОМАК ("тороидальная камера с магнитными катушками"- от рус., прим. автора ), работает по принципу синтеза, а не распада, и не оставляет после себя ядерных отходов. Чтобы построить его, семь стран объединили усилия; сомневается только Америка. Отчасти потому, что Токомак, пока такая же мечта ученых, как и лекарство от СПИДа. [5]

    Европейский союз, Республика Корея, Индия, Китай, Япония, Россия и США создали Организацию  ИТЭР для освоения данного средства выработки электроэнергии. Название проекта по-английски звучит как International Thermonuclear Experimental Reactor, сокращенно ITER, что одновременно является латинским словом iter и в переводе означает "путь"(см. рис.№2).

    ИТЭР  станет первым термоядерным реактором, который будет вырабатывать больше энергии, чем потреблять. Ученые измеряют эту характеристику с помощью простого коэффициента, который они называют "Q". Если ИТЭР позволит достичь всех поставленных научных целей, то он будет производить в 10 раз больше энергии, чем потреблять. Другая научная цель заключается в том, что ИТЭР будет иметь весьма продолжительное время "горения" - импульс увеличенной длительности до одного часа. [6]

    В энергетически выгодных термоядерных реакциях участвуют прежде всего  изотопы водорода-дейтерий (Д) и тритий (Т) . При этом из двух реакций Д+Д и Д+Т последняя в сто раз эффективнее, и во всех современных установках пытаются осуществить именно её. При слиянии ядер дейтерия и трития образуется нестабильное ядро, которое быстро распадается на альфа-частицу и нейрон.

    Дело  осложняется тем, что "готового" трития в природе почти нет. Но выход найден: этот изотоп производится в самом реакторе из лития. Таким  образом, в термоядерных реакциях, в  том числе в ТОКОМАКАХ, будет, по существу, "сжигаться" литий, один грамм которого в этом случае соответствует тонне условного топлива. А доступные запасы лития на Земле на три порядка превосходят запасы органического топлива, причём добывать литий сравнительно несложно. Для получения полезной энергии в реакциях ядерного синтеза надо последовательно достичь двух пороговых условий: "зажигания" реакции, то есть положительного энергобаланса, и самостоятельного, самоподдерживающегося синтеза, уже не требующего внешнего "подогрева".

    В ИАЭ имени И. В. Курчатова и НИИ электрофизической аппаратуры имени Д. В. Ефремова разрабатывается Опытный термоядерный реактор (ОТР). В ОТР ставится целью самоподдержание реакции на таком уровне, чтобы отношение полезного выхода энергии к затраченной (обозначается Q) было больше или, по крайней мере, равно единице: Q=1. Это условие — серьёзный этап отработки всех элементов системы на пути создания коммерческого реактора с Q=5. По имеющимся оценкам, лишь при этом значении Q достигается самоокупаемость термоядерного энергоисточника, когда окупаются затраты на все обслуживающие процессы, включая и социально-бытовые затраты. А пока что на американском TFTR достигнуто значение Q=0,2-0,4. [5]

    Программа термоядерного синтеза носит  поистине международный, широкий характер. Здесь уже многое запланировано и предопределено. А что дальше — это уже во многом из области фантастики... 

3. Заключение

     Хотя  человечество на протяжении всей своей  истории сталкивается с ограниченностью  природных ресурсов, оно до сих  пор не осознало последствий их бесконтрольного использования. Ни на макро-, ни на микроуровнях в экономике не используется показатель природоемкости. В настоящее время экономика мирового хозяйства чрезвычайно природоемка, что и обусловливает техногенный тип развития и истощение природных ресурсов[1]. 
 

4. Список литературы 

    1. Т.А. Акимова, В.В. Хаскин, А.П. Кузьмин, Экология. Природа-Человек-Техника./под ред. А.П.Кузьмин .-М.: ЮНИТИ-ДАНА, 2001.-455 с. 

    2. Автор не известен. [Электронный ресурс]

    - http://ust-razvitie.narod.ru/ 

    3. Кукольщикова С.Б. Ветровая энергетика: состояние проблемы. [Электронный ресурс] / Кукольщикова С.Б., Российский Университет Дружбы Народов, Москва 2000 – http://www.bankreferatov.ru/, vetroenergetika_za_rybezhom.zip (доступ 10.09.07) 

Информация о работе Энергосберегающие технологии