Методы и средства измерений температуры

Автор работы: Пользователь скрыл имя, 24 Января 2013 в 19:45, курсовая работа

Описание

Цель курсовой работы изучить методы и средства измерений температуры.
Задачи курсовой работы:
1. Изучить определение температуры.
2. Изучить методы получения и контроля температуры.
Объектом является измерение температуры.

Содержание

Введение 3
1. Температура и о температурные шкалы 5
1.1. Определение понятий температуры 5
1.2. Устройства для измерения температур 7
2. Методы и технические средства измерения температуры 8
2.1. Измерение температуры 8
2.2. Технические средства измерения 9
2.3. Методы измерения температуры 18
Заключение 23
Список использованных источников 24

Работа состоит из  1 файл

Методы и средства измерений, испытаний и контроля кур.doc

— 394.50 Кб (Скачать документ)

 

Содержание

 

Введение

Повышение эффективности  промышленных объектов идет по пути совершенствования как самих технологических процессов, так и процессов управления ими. Немаловажным фактором, затрудняющим построение систем управления, является то, что технологи, хорошо знающие, что следует измерять в объекте, как правило, плохо осведомлены о возможностях современной измерительной техники.

Весьма важно, чтобы с новыми приборами и  методами были хорошо знакомы как производственники, так и лица, занимающиеся исследовательской работой. При этом они должны совершенно отчетливо представлять себе, в каких областях эти новые приборы и методы наиболее целесообразно использовать, с какими это сопряжено затратами времени (и средств) и какова точность получаемых с их помощью результатов.

Роль измерений при наблюдении за производственными процессами заметно отличается от роли измерений при проведении лабораторных опытов (физико-химических экспериментов). В первом случае задачей измерений является лишь получение численного значения наблюдаемой характеристики объекта измерений для контроля за правильностью осуществления известных операций производства. При проведении же опытов результат измерений рассматривается как отклик на целенаправленное изменение условий эксперимента, проводимого с целью получения неизвестных ранее сведений об исследуемом объекте.

Одним из важнейших параметров, как лабораторных экспериментов, так и технологических процессов многих отраслей промышленности является температура. По оценкам отечественных и зарубежных специалистов технические измерения температуры составляют 40-50% общего числа всяких измерений. Поэтому качество температурного контроля часто обуславливает успех процесса производства.

Высокопроизводительная, экономичная и безопасная работа технологических агрегатов машиностроительной промышленности требует применения современных методов и средств измерения величин, характеризующих ход производственного процесса и состояние оборудования.

Актуальностью темы является, что в современной техники для решения задач автоматического контроля все шире применяют полупроводники, лазеры, радиоактивные материалы, ЭВМ. Металлургическая промышленность является одной из основных отраслей народного хозяйства, в ней занято большое количество трудящихся, обслуживающих мощные и сложные агрегаты. При высоких производительностях даже самые небольшие ошибки управления агрегатом приводят к большим абсолютным потерям металла, топлива, электроэнергии. По этому возрастает роль автоматического контроля и управления производственными процессами. Все основные металлургические агрегаты (доменные и мартеновские печи, прокатные станы) оснащены различными системами автоматического контроля и управления и в значительной степени механизированы.

Основными параметрами (величинами), которые необходимо контролировать при работе металлургических агрегатов, является температура различных сред; расход, давление, состав газов и жидкостей; состав металлов; геометрические размеры проката. Автоматическими приборами измеряется температура: в рабочих пространствах металлургических печей, выплавляемого и нагреваемого металла, элементов огнеупорной кладки, конструкции регенераторов и рекуператоров, а так же продуктов сгорания топлива.

Цель курсовой работы изучить методы и средства измерений температуры.

Задачи курсовой работы:

  1. Изучить определение температуры.
  2. Изучить методы получения и контроля температуры.

Объектом является измерение температуры.

 

1. температура и температурные шкалы

1.1. Определение  понятий температуры

Температурой  называют величину, характеризующую тепловое состояние тела. Согласно кинетической теории температуру определяют как меру кинетической энергии поступательного движения молекул. Отсюда температурой называют условную статистическую величину, прямо пропорциональную средней кинетической энергии молекул тела.

Все предлагаемы  температурные шкалы строились (за редким исключением) одинаковым путем: двум (по меньшей мере) постоянным точкам присваивались определенные числовые значения и предполагалось, что видимое  термометрическое свойство используемого в термометре вещества линейно связанно с температурой t:

,

где k – коэффициент  пропорциональности; E – термометрическое свойство; D – постоянная.

Принимая для  двух постоянных точек определенные значения температур, можно вычислить постоянные k, D и на этой основе построить температурную шкалу. При изменении температуры коэффициент k меняется, при чем различно для разных термометрических веществ. Поэтому термометры, построенные на базе различных термометрических веществ с равномерной градусной шкалой, давали при температурах, отличающихся от температур постоянных точек, различные показания. Последние становились особенно заметными при высоких (много больших температуры кипения воды) и очень низких температурах.

Термодинамическая шкала тождественна шкале идеального газа, построенной на зависимости давления идеального газа от температуры. Законы изменения давления от температуры для реальных газов отклоняются от идеальных, но поправки на отклонения реальных газов невелики и могут быть установлены с высокой степенью точности. Поэтому, наблюдая за расширением реальных газов и вводя поправки, можно оценить температуру по термодинамической шкале.

В начале XX века широко применялись шкалы Цельсия  и Реомюра, а в научных работах  – также шкалы Кельвина и водородная. Пересчеты с одной шкалы на другую создавали большие трудности и приводили к ряду недоразумений. Поэтому в 1933 году было принято решение о введении Международной температурной шкалы (МТШ).

Опыт применения МТШ показал необходимость внесения в нее ряда уточнений и дополнений, чтобы по возможности максимально приблизить ее к термодинамической шкале. Поэтому МТШ была пересмотрена и приведена в соответствие с состоянием знаний того времени. В 1960 году было утверждено новое «Положение о международной практической температурной шкале 1948 года. Редакция 1960 г.»

Температуру определяют косвенно – по изменению физических свойств различных тел, получивших название термометрических. Для практических целей, связанных с измерением температуры, принята Международная практическая температурная шкала (МПТШ-68), которая является обязательной для всех метрологических органов и основывается на ряде воспроизводимых состояний равновесия (реперных точек) некоторых веществ, которым присвоены определённые значения температуры.

 

1.2. Устройства для измерения температур

Температуру измеряют с помощью устройств, использующих различные термометрические свойства жидкостей, газов и твердых тел. Существуют десятки различных устройств применяемых в промышленности, при научных исследованиях, для специальных целей.

В таблице 1 приведены  наиболее распространенные устройства для измерения температуры и  практические пределы их применения.

Таблица 1

Термометрическое  свойство

Наименование  устройства

Пределы длительного применения, 0С

Нижний

Верхний

Тепловое расширение

Жидкостные  стеклянные термометры

-190

600

Изменение давления

Манометрические термометры

-160

60

Изменение электрического сопротивления

Электрические термометры сопротивления.

-200

500

Полупроводниковые термометры сопротивления

-90

180

Термоэлектрические  эффекты

Термоэлектрические  термометры (термопары) стандартизованные.

-50

1600

Термоэлектрические  термометры (термопары) специальные

1300

2500

Тепловое излучение

Оптические  пирометры.

700

6000

Радиационные  пирометры.

20

3000

Фотоэлектрические пирометры.

600

4000

Цветовые пирометры

1400

2800


 

2. Методы и технические средства измерения температуры

2.1. Измерение температуры

Все приборы  для измерения температуры условно  можно разделить на две большие  группы: контактные и бесконтактные. Контактные способы основаны на непосредственном контакте измерительного преобразователя температуры с исследуемым объектом, в результате чего добиваются состояния теплового равновесия преобразователя и объекта. Этому способу присущи свои недостатки. Температурное поле объекта искажается при введении в него термоприемника. Температура преобразователя всегда отличается от истинной температуры объекта. Верхний предел измерения температуры ограничен свойствами материалов, из которых изготовлены температурные датчики. Кроме того, ряд задач измерения температуры в недоступных вращающихся с большой скоростью объектах не может быть решен контактным способом.

Бесконтактный способ основан на восприятии тепловой энергии, передаваемой через лучеиспускание и воспринимаемой на некотором расстоянии от исследуемого объема. Этот способ менее  чувствителен, чем контактный. Измерения температуры в большой степени зависят от воспроизведения условий градуировки при эксплуатации, а в противном случае появляются значительные погрешности. Устройство, служащее для измерения температуры путем преобразования ее значений в сигнал или показание, называется термометром (ГОСТ 13417-76).

По принципу действия все термометры делятся  на следующие группы, которые используются для различных интервалов температур:

1 Термометры  расширения от -260 до +700 °С, основанные  на изменении объемов жидкостей или твердых тел при изменении температуры.

2 Манометрические термометры от -200 до +600 °С, измеряющие температуру по зависимости давления жидкости, пара или газа в замкнутом объеме от изменения температуры.

3. Термометры  электрического сопротивления стандартные от -270 до +750 °С, преобразующие изменение температуры в изменение электрического сопротивления проводников или полупроводников.

4. Термоэлектрические  термометры (или пирометры), стандартные  от -50 до +1800 °С, в основе преобразования  которых лежит зависимость значения электродвижущей силы от температуры спая разнородных проводников.

5. Пирометры излучения от 500 до 100000 °С, основанные на измерении температуры по значению интенсивности лучистой энергии, испускаемой нагретым телом,

6. Термометры, основанные на электрофизических явлениях от -272 до +1000 °С (термошумовые термоэлектрические преобразователи, объемные резонансные термопреобразователи, ядерные резонансные).

2.2. Технические  средства измерения

Жидкостные стеклянные термометры

Самые старые устройства для измерения температуры – жидкостные стеклянные термометры – используют термометрическое свойство теплового расширения тел. Действие термометров основано на различии коэффициентов теплового расширения термометрического вещества и оболочки, в которой она находится (термометрического стекла или реже кварца).

Жидкостный термометр  состоит из стеклянных баллона 1, капиллярной  трубки 3 и запасного резервуара 4 (рис. 1). Термометрическое вещество 2 заполняет  баллон и частично капиллярную трубку. Свободное пространство в капиллярной трубке и в запасном резервуаре заполняется инертным газом или может находиться под вакуумом. Запасной резервуар или выступающая за верхним делением шкалы часть капиллярной трубки служит для предохранения термометра о порчи при чрезмерном перегреве.

В качестве термометрического  вещества чаще всего применяют химически  чистую ртуть. Она не смачивает стекла и остается жидкой в широком интервале  температур. Кроме ртути в качестве термометрического вещества в стеклянных термометрах применяются и другие жидкости, преимущественно органического происхождения. Например: метиловый и этиловый спирт, керосин, пентан, толуол, галлий, амальгама таллия.

Основные достоинства  стеклянных жидкостных термометров  – простота употребления и достаточно высокая точность измерения даже для термометров серийного изготовления. К недостаткам стеклянных термометров можно отнести: плохую видимость шкалы (если не применять специальной увеличительной оптики) и невозможность автоматической записи показаний, передачи показаний на расстояние и ремонта.

Стеклянные  жидкостные термометры имеют весьма широкое применение и выпускаются  следующих основных разновидностей:

    1. технические ртутные, с вложенной шкалой, с погружаемой в измеряемую среду нижней частью, прямые и угловые;
    2. лабораторные ртутные, палочные или с вложенной шкалой, погружаемые в измеряемую среду до отсчитываемой температурной отметки, прямые, небольшого наружного диаметра;
    3. жидкостные термометры (не ртутные);
    4. повышенной точности и образцовые ртутные термометры;
    5. электроконтактные ртутные термометры с вложенной шкалой, с впаянными в капиллярную трубку контактами для разрывания (или замыкания) столбиком ртути электрической цепи;
    6. специальные термометры, в том числе максимальные (медицинские и другие), минимальные, метеорологические и другого назначения.

Информация о работе Методы и средства измерений температуры