Развитие электродинамики

Автор работы: Пользователь скрыл имя, 19 Февраля 2012 в 17:05, реферат

Описание

Важнейшим шагом вперед в развитии учения об электрических и магнитных явлениях было изобретение первого источника постоянного тока — гальванического элемента. История этого изобретения начинается с работ итальянского врача Луиджи Гальвани (1737 — 1798), относящихся к концу XVIII в. Гальвани интересовался физиологическим действием электрического разряда. Начиная с 80-х гг. XVIII столетия, он предпринял ряд опытов для выяснения действия электрического разряда на мускулы препарированной лягушки.

Содержание

1. История изобретения гальванического элемента.
2. Открытие электромагнетизма
3. Открытие электромагнитной индукции.
4. Начало развития электротехники
5. Используемая литература

Работа состоит из  1 файл

РАЗВИТИЕ ЭЛЕКТРОДИНАМИКИ.doc

— 199.50 Кб (Скачать документ)

 Она  оказалась неверной, потому что  он заранее предположил, что  сина взаимодействия между элементами токов должна быть направлена по прямой, соединяющей эти элементы. На самом же деле эта сила направлена под углом к этой прямой. Однако вследствие того что Ампер проводил опыты с замкнутыми постоянными токами, он получал при расчетах по своей формуле правильные результаты. Оказывается, что для замкнутых проводников формула Ампера приводит к тем же результатам, что и исправленная впоследствии формула,

выражающая  силу взаимодействия между элементами токов, которая по-прежнему носит название закона Ампера. 
 
 
 

   
 
 

  1. Открытие  электромагнитной индукции.

     

Следующим важным шагом в развитии электродинамики  после опытов Ампера было открытие явления электромагнитной индукции. Открыл явление электромагнитной индукции английский физик Майкл Фарадей (1791 — 1867). Фарадей, будучи еще молодым ученым, так же как и Эрстед, думал, что все силы природы связаны между собой и, более того, что они способны превращаться друг в друга. Интересно, что эту мысль Фарадей высказывал еще до установления закона сохранения и превращения энергии. Фарадей знал об открытии Ампера, о том, что он, говоря образным языком, превратил электричество в магнетизм. Раздумывая над этим открытием, Фарадей пришел к мысли, что если «электричество создает магнетизм», то и наоборот, «магнетизм должен создавать электричество». И вот еще в 1823 г. он записал в своем дневнике: «Обратить магнетизм в электричество». В течение восьми лет Фарадей работал над решением поставленной задачи. Долгое время его преследовали неудачи, и, наконец, в 1831 г. он решил ее — открыл явление электромагнитной индукции. Во-первых, Фарадей обнаружил явление электромагнитной индукции для случая, когда катушки намотаны на один и тот же барабан. Если в одной катушке возникает или пропадает электрический ток в результате подключения к ней или отключения от нее гальванической батареи, то в другой катушке в этот момент возникает кратковременный ток. Этот ток обнаруживается гальванометром, который присоединен ко второй катушке. Во-вторых Фарадей установил также наличие индукционного тока в катушке, когда к ней приближали или удаляли от нее катушку, в которой протекал электрический ток. Наконец, третий случай электромагнитной индукции, который обнаружил Фарадей, заключался в том, что в катушке появлялся ток, когда в нее вносили или же удаляли из нее магнит. Открытие Фарадея привлекло внимание многих физиков, которые также стали изучать особенности явления электромагнитной индукции. На очереди стояла задача установить общий закон электромагнитной индукции. Нужно было выяснить, как и от чего зависит сила индукционного тока в проводнике или от чего зависит значение электродвижущей силы индукции в проводнике, в котором индуцируется электрический ток. Эта задача оказалась трудной. Она была полностью решена Фарадеем и Максвеллом позже в рамках развитого ими учения об электромагнитном поле. Но ее пытались решить и физики, которые придерживались обычной для того времени теории дальнодействия в учении об электрических и магнитных явлениях. Кое-что этим ученым удалось сделать. При этом им помогло открытое петербургским академиком Эмилием Христиановичем Ленцем (1804 — 1865) правило для нахождения направления индукционного тока в разных случаях электромагнитной индукции. Ленц сформулировал его так: «Если металлический проводник движется поблизости от гальванического тока или магнита, то в нем возбуждается гальванический ток такого направления, что если бы данный проводник был неподвижным, то ток мог бы обусловить его перемещение в противоположную сторону; при этом предполагается, что покоящийся проводник может перемещаться только в направлении движения или в противоположном направлении».

 Это  правило очень удобно для определения  направления индукционного тока. Им мы пользуемся и сейчас, только оно сейчас формулируется несколько иначе, с употреблением понятия электромагнитной индукции, которое Ленц не использовал. Но исторически главное значение правила Ленца заключалось в том, что оно натолкнуло на мысль, каким путем подойти к нахождению закона электромагнитной индукции. Дело в том, что в атом правиле устанавливается связь между электромагнитной индукцией и явлением взаимодействии токов.

Вопрос  же о взаимодействии токов был  уже решен Ампером. Поэтому установление этой связи на первых порах дало возможность определить выражение  электродвижущей силы индукции в проводнике для ряда частных случаев. В общем виде закон электромагнитной индукции, как мы об этом сказали, был установлен Фарадеем и Максвеллом.

  
 
 
 
 
 

  1. Начало  развития электротехники
 

Вместе  с развитием и успехами учения об электромагнитных явлениях появляется новая область техники — электротехника. Прежде всего возникает электрический телеграф. Первый электромагнитный телеграф был изобретен русским изобретателем П. Л. Шиллингом в 1832 г. Телеграф Шиллинга состоял из передающего и принимающего устройств, соединенных несколькими проводами. В приемном аппарате имелось шесть так называемых мультипликаторов. Каждый мультипликатор представлял собой проволочную катушку, внутри которой находилась магнитная стрелка, подвешенная на нити. К нити вне катушки прикреплялась еще одна магнитная стрелка, направление полюсов которой было противоположным направлению полюсов первой стрелки. Такая система называется астатической, она употребляется для того, чтобы исключить действие на стрелки магнитного поля Земли. Помимо этого, к каждой нити был прикреплен кружок, стороны которого были окрашены в черный и белый цвета. Когда в катушку мультипликатора поступал электрический ток определенного направления, то на стрелку, находящуюся внутри катушки, действовала пара сил. Стрелка поворачивалась, вместе с ней поворачивался и кружок, показывая белую или черную сторону.

 На  приемном аппарате находилось  шесть мультипликаторов, соединенных 

проводниками  с передающими аппаратами: Передающий аппарат имел соответствующее число клавишей и источник электрического тока — гальваническую батарею. При нажатии определенной клавиши ток посылался по проводам в соответствующий мультипликатор, в котором стрелки и кружок поворачивались в нужном направлении. Таким образом осуществлялась передача сигналов. Из сочетания черных и белых кружков была разработана условная азбука. Телеграф Шиллинга употреблялся для практических целей. С его помощью осуществлялась связь между Зимним дворцом и зданием министерства путей сообщения в Петербурге. Вскоре появились и другие телеграфные аппараты, отличающиеся от аппарата Шинлинга. В 1837 г. американец Морзе сконструировал более удобный телеграфный аппарат. В телеграфе Морзе при замыкании ключа электрический ток поступал в обмотку электромагнита, который притягивал висящий маятник с закрепленным на конце карандашом, При этом конец карандаша касался бумажной ленты, непрерывно передвигающейся с помощью специального механизма в горизонтальном направлении перпендикулярно плоскости качания маятника. 3амыкание ключа на короткое время давало на бумажной ленте изображение точки, а на более длительное — тире. С помощью комбинаций точек и тире Морзе разработал специальный телеграфный код — азбуку Морзе. В 1844 г. Морзе построил первую телеграфную линию в Америке между Вашингтоном и Балтимором. С этого времени началось широкое применение вершенной конструкции.

Вслед за применением электричества для  связи изобретательская мысль начинает работать над задачей использования  его в качестве движущей силы. Уже  в З0-х гг. XIX в. появляются изобретения различных электродвигателей. Первый электродвигатель, применяемый для практических целей, был изобретен в 1834 г. петербургским академиком Б. С. Якоби (1801 — 1874).

В 1838 г. этот двигатель был применен для  приведения в движение лодки, которая плавала по Неве со скоростью 2 км/ч. Предлагались и другие конструкции электрических двигателей. Однако, так же как и двигатель Якоби, они были неудобны для практики и не получали широкого применения. Только во второй половине XIX в. в результате работ ряда ученых и изобретателей появился электродвигатель, который начал широко применяться в технике. Одновременно с электродвигателем начались попытки конструирования генераторов электрического тока. Первые практически пригодные генераторы электрического тока также появились только во второй половине XIX в. 3начительную роль в деле усовершенствования генераторов сыграло применение электричества для освещения. Начало применения электричества для освещения относится к 60-м гг. прошлого столетия, когда дуговая лампа (т. е. электрическая дуга) была установлена на маяках. Но применение этих ламп встречало большие трудности. Дело в том, что дуговую лампу нужно было непрерывно регулировать, так как концы угольных электродов сгорали, расстояние между ними увеличивалось, в результате этого цепь разрывалась и дуга затухала. Русский изобретатель Павел Николаевич Яблочков (1847 — 1894) много думал над усовершенствованием таких дуговых ламп и пришел к новому и оригинальному решению этой проблемы. Вместо обычного расположения угольных электродов в дуговой лампе, при котором расстояние между ними менялось по мере их сгорания, Яблочков расположил их параллельно рядом, а между ними поместил изолирующую прокладку, которая сгорала вместе с углем. Эта конструкция получила название свечи Яблочкова. В 1876 г. Яблочков взял патент на свое изобретение, и оно быстро получило распространение. «Русский свет» (так называли изобретение Яблочкова) засиял на улицах, площадях, в помещениях многих городов Европы, Америки и даже Азии. «Из Парижа, — писал Яблочков, — электрическое освещение распространилось по всему миру, дойдя до дворца шаха Персидского и до дворца короля Камбоджи»). С начала 80-х гг. появилась лампа накаливания. Первым изобретателем лампы накаливания был русский инженер А. Н. Лодыгин (1847 — 1923). Одна из конструкций лампы Лодыгина представляла собой стеклянный баллон, внутри которого в вакууме между двумя медными стержнями помещался угольный стержень. Уже в 1873 г. Лодыгин демонстрировал освещение своими лампами одной из улиц Петербурга. В 1874 г. Лодыгин получил за свое изобретение Ломоносовскую премию Академии наук. В 1879 г. американский изобретатель Эдисон создал удачную конструкцию лампы накаливания, и вскоре она получила распространение во всем мире. Использование электричества для связи, в качестве движущей силы, для освещения явилось стимулом создания электрических генераторов, изобретения трансформаторов и т. д. Появившаяся вместе с этим новая область техники — электротехника во второй половине XIX в. приобрела важное практическое значение. Все убыстряющееся развитие электротехники приводит к необходимости совершенствования измерительной аппаратуры. Конструируются и непрерывно совершенствуются гальванометры, амперметры, вольтметры, магазины сопротивлений, конденсаторы и т. д. Все это, конечно, оказывает сильное положительное влияние на развитие научных исследований в области электромагнетизма, и развитие этой области физических наук идет все более быстрыми темпами.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Используемая литература 

1. Спасский Б. И. "Физика в ее развитии", пособие для учащихся. — М. Просвещение, 1979г. — 208с. 

2. Дягилев Ф. М. "Из истории физики и жизни ее творцов", М. Просвещение, 198бг., 255с.

Информация о работе Развитие электродинамики