Развитие взглядов на природу света и первые открытия в области физической оптики

Автор работы: Пользователь скрыл имя, 26 Ноября 2012 в 12:18, реферат

Описание

Подавляющее большинство древних философов и ученых рассматривало свет как некие лучи, соединяющие светящееся тело и человеческий глаз. При этом одни из них полагали, что лучи исходят из глаз человека, они как бы ощупывают рассматриваемый предмет. Эта точка зрения имела сначала большое число последователей. Даже такой крупнейший ученый, как Квклид, придерживался ее. Формулируя первый закон геометрической оптики, закон прямолинейного распространения света, Евклид писал: “Испускаемые глазами лучи распространяются по прямому пути”. Такого же взгляда придерживался Птолемей и многие другие ученые и философы.

Работа состоит из  1 файл

Развитие взглядов на природу света и первые открытия в области ф[1].doc

— 944.50 Кб (Скачать документ)

 

Борьба за признание  волновой теории света 

Френель не случайно в  первых своих работах обошел вопрос о поляризации света. Ведь, рассматривая световые волны как волны в  эфире, Френель считал их продольными. Эфир – это очень тонкая материя, он подобен очень разреженному воздуху. А в воздухе, как уже все знали, могут распространяться только продольные волны, например звуковые, т.е. сгущения и разрежения воздушной среды. В звуковых волнах ничего подобного явлению поляризации не наблюдается.

Если бы, конечно, поляризация света не была еще известна. то вопрос о волновой природе света решить было бы проще. Но явление поляризации света было открыто.

Датский физик Бартолин еще в XVII в. исследовал явление двойного лучепреломления. Он наблюдал, что если на кристалл исландского шпата падает луч света, то он при преломлении раздваивается. Если смотреть на точечный источник света через этот кристалл, то можно увидеть не один, а два таких источника. Это явление зависит от ориентации кристалла относительно луча.

В кристалле есть направление, по которому раздваивание луча не происходит. Это направление называется оптической осью кристалла.

Явлением двойного лучепреломления  в начале XIX в. заинтересовался французский  инженер Малюс. Исследуя это явление, он обнаружил, что если смотреть через кристалл исландского шпата на изображение Солнца в стекле, то при одних положениях этого кристалла видно два солнца, а при определенном положении стекла и кристалла одно из изображений пропадает, даже если световые лучи направлены не вдоль оптической оси.

Малюс был сторонником  корпускулярной теории света и с  точки зрения этой теории попытался  объяснить наблюдаемое явление.

Он рассуждал так: световые частицы не являются шариками. Они  подобно магнитам имеют полюсы. В  обычном свете эти частицы летят, будучи ориентированы в пространстве хаотично. При отражении же от стекла или воды они как бы сортируются. Одни, у которых полюсы ориентированы определенным образом, прелом-ляются, а другие, ориентируемые иначе, отражаются. При определенном угле падения эта сортировка будет наиболее полной. И в этом случае отраженные световые частицы будут ориентированы все в одном направлении. В этом случае отраженный свет будет полыостью поляризован. Малюс и назвал это явление поляризацией. Слово “поляризация” он придумал исходя из идеи о том, что частицы света имеют полюсы.

После открытия Малюса стали  усиленно изучать явление поляризации  света. Был выяснен целый ряд  свойств поляризованного света. Однако ученые всетаки пытались объяснить  это явление с точки зрения корпускулярной теории.

Создалось такое положение, когда Юнг и Френель прекрасно  объяснили явление интерференции  и дифракции, пользуясь представлениями  о волновой природе света, но не могли  объяснить поляризацию света.

Раздумывая над явлениями  поляризации и двойного лучепра-ломления, Юнг и Френель пришли к убеждению о необходимости считать световые волны не продольными, а поперечными. С помощью этой гипотезы Френель исследовал указанные явления и разработал теорию прохождения поперечных волн через двоякопреломляющее тело. Но все же гипотеза о поперечности световых волн вызвала много возражений.

Действительно, уже было известно, что поперечные волны могут  существовать и распространяться только в твердых телах. Поэтому эфир нужно было рассматривать как  твердое тело. Но эфир ведь очень “тонкая среда”, гораздо более “тонкая”, чем воздух. Он не оказывает никакого сопротивления движению в нем тел. Планеты, например, движутся в эфире, не испытывая никакого сопротивления. Как же можно считать эфир твердым телом?

Больше того, всякое тело обладает упругостью по отношению к  сжатию. А это значит, что в  нем могут распространяться волны  сжатия и разрежения, т.е. продольные волны. Следовательно, в каждом твердом  теле могут возникать и продольные и поперечные волны. Если только признать, что тело является абсолютно несжимаемым или абсолютно твердым, то в нем должны отсутствовать продольные волны. Следовательно, эфир нужно было бы рассматривать не только как твердое тело, но и как абсолютно твердое тело. Такой эфир, конечно, представить себе было трудно.

Однако постепенно, несмотря на все трудности, стоявшие перед  гипотезой о поперечности световых волн, волновая теория света начала побеждать и вытеснять корпускулярную теорию света.

Новые исследования интерференции  и дифракции света, в частности изобретение дифракционной решетки, все больше и больше подтверждали эту теорию. Все больше ученых переходит на сторону волновой теории света. Можно считать, что к 40-м гг. XIX в. волновая теория света становится общепризнанной.

Что же касается теории эфира, то над построением ее бились многие ученые. Но никто из них не мог получить удовлетворительных результатов; никто не мог составить удовлетворительного представления о такой среде, в которой могут существовать только поперечные волны, обладающие свойствами световых волн.

В 1864 г. Максвелл высказал гипотезу об электромагнитной природе  света. Спустя почти двадцать лет  Герц подтвердил ее на опыте. После  этого перед физиками встала проблема построить теорию эфира, которая  давала бы объяснение электрическим и магнитным явлениям, а значит и оптическим .

Ученые долго трудились  и над этой проблемой, предлагая  различные модели этой гипотетической среды. Было создано много теорий, но ни одну из них не признали удовлетворительной. Эфир ускользал от попыток физиков построить его теорию.

Появилось даже мнение о  невозможности построения такой  теории. Так дело продолжалось до возникновения  теории относительности, которая покончила  с эфиром и привела к новым  представлениям о сущностй электромагнитных, а вместе с этим и оптических явлений.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Метод Рёмера

Скорость света  определяется аналогично скорости распространения  волнь любой природы. Методы измерения  скорости разделяются на астрономические  и лабораторные. Один из астрономических методов, метод Ремера, осно ван на наблюдении промежутков времени Т между двумя последовательными за тмениями спутника Юпитера Ио . Запаздывание Т затмения в момент наибольшего удаления Земли от Юпитера по сравнению с моментом наибольшего сближения двух планет (точки Ю и 3) связано с тем, что свет, распространяясь с конечной скоростью с, проходит за время ЛГ расстояние, равное диаметру орбиты Земли Современные данные для ЛТ=16,5 мин приводят к значению с, близкому к с=300000 км/с.


 

 

 

 

 

 

 

Метод Физо

В 1849 г. А. Физо поставил лабораторный опыт по измерению скорости света (см рис.). Свет от источника 5 проходил через прерыватель К (зубья вращающегося колеса) и, отразившись от зеркала 3, возвращался опять к зубчатому  колесу. Допустим, что зубец и прорезь зубчатого колеса имеют одинаковую ширину и место прорези на колесе занял соседний зубец. Тогда свет перекроется зубцом и в окуляре станет темно. Это наступит при условии, что время прохождения света туда и обратно t=2L/c окажется равным времени поворота зубчатого колеса на половину прорези t2=T/(2N)=1/(2Nv). Здесь L- расстояние от зубчатого колеса до зеркала; Т—период вращения зубчатого-колеса; N—число зубцов; v=1/T—частота вращения. Из равенства t1=t2 следует расчетная формула для определения скорости света данным методом:

c=4LNv

Используя метод  вращающегося затвора, Физо в 1849 г. по- лучил значение скорости света с = 3,13-10**5 км/с, что было совсем неплохо  по тем временам. В дальнейшем использование  раз- личных затворов позволило существенно уточнить значение ско- рости света. Так, в 1950 г. получено значение скорости света (в вакууме), равное

с= (299 793,1 ±0,25) км/с.

 

Скорость света

В XVII веке попытка измерить скорость света увенчалась успехом. Молодой  датчанин Ремер заметил, что тень одной из лун Юпитера периодически появлялась на поверхности планеты на 16 минут 36 секунд раньше, чем при наблюдении в другое время года. Ремер решил, что причиной разницы во времени является то обстоятельство, что один раз в году Земля находится на кратчайшем расстоянии от Юпитера, а через шесть месяцев – в максимальном удалении. Ремер полагал, что разница в несколько минут равна времени, в течение которого свет пересекает земную орбиту. Разделив это расстояние на 16 минут 36 секунд, он получил 186 тысяч миль в секунду.

Только  через сто семьдесят три года, в 1849 году, стало возможным измерение  скорости света, проходящего между  двумя точками на поверхности  Земли. Выбрали расстояние в 10 миль. Французский ученый Физо поставил эксперимент, посылая импульсы света на удаленное зеркало и измерял время, требующееся на возвращение луча. Свет разбивался на импульсы следующим образом. Луч проходил сквозь промежутки между выступами на окружности быстро вращающегося диска. При достаточно быстром вращении диска импульс света доходил до зеркала и возвращался обратно как раз за то время, в течение которого диск поворачивался на небольшой угол – на ширину одного промежутка между выступами. На диске Физо было 720 выступов, и он делал 25 оборотов в секунду. Зная расстояние от источника света до зеркала и обратно, Физо подсчитал скорость света и получил 194 тысячи миль в секунду.

Примерно  через 20 лет, когда Майкельсон преподавал в Аннаполисе, проблема измерения скорости света приобрела новое значение. Сформулированная Максвеллом электромагнитная теория света, с одной стороны, утверждала, что скорость света должна быть меньше в воде, чем в воздухе. С другой стороны, из корпускулярной теории Ньютона следовало, что скорость света в воде больше, чем в воздухе. В 60-е и 70-е годы XIX века выяснение этого противоречия стало наиболее актуальным исследованием в физике. Науке необходим был способ точного измерения скорости света в любой среде.

Майкельсон  говорил: «Тот факт, что скорость света  непостижима для человеческого  представления и, с другой стороны, существование принципиальной возможности  ее измерения с чрезвычайной точностью, делают эту задачу одной из самых увлекательных проблем, когда-либо стоявших перед исследователем».

Знание  скорости света было важно также  для многих астрономических проблем  навигации. Конгресс выделил средства известному американскому астроному  Саймону Нью-комбу для работы над этой проблемой. В 1877 году юный младший лейтенант Майкельсон неожиданно придумал метод измерения скорости света с помощью простейшего аппарата. Результаты его работы были опубликованы в журнале «Америкэн Джорнэл оф Сайенс» шесть месяцев спустя, в мае 1878 года.

В то лето тесть Майкельсона дал  ему 2 тысячи долларов на усовершенствование аппарата. Путь луча был увеличен более  чем в 30 раз и доведен до 700 метров, смещение изображения равнялось 13,3 сантиметра вместо двух. Максвелл предсказывал, что скорость света должна равняться 300 тысячам километров в секунду. Результат Майкельсона составлял 299895 ± 30 километров в секунду. Он подтвердил предположение Максвелла с точностью до одной десятитысячной.

В течение всей своей жизни Майкельсон постоянно возвращался к этому измерению, пытаясь бесчисленными способами еще более уточнить результат. В 1926 году, когда ему было семьдесят четыре года, он применил систему, в которой луч света посылался с вершины горы Вильсон на вершину Сан-Антонио, то есть на 22 мили и обратно. Вращающееся зеркало было изготовлено с чрезвычайной точностью, и оно приводилось в движение специально разработанным устройством. Майкельсон подтвердил результат своих предыдущих измерений.

Два года спустя, в 1928 году, в возрасте семидесяти шести лет, Майкельсон получил средства для измерения скорости света в вакууме. Деньги на это ему дали обсерватория Маунт-Вильсон, Чикагский университет, фонд Рокфеллера и корпорация Карнеги. Ассистентами Майкельсона были Ф.Г. Пиз и Ф. Пирсон. Сотрудники Береговой геодезической службы Соединенных Штатов разметили и вымерили расстояние для громадного прибора на ранчо Эрвин. Вакуум предполагалось создать в трубе из гофрированного стального проката длиной почти в милю. Труба имела 3 фута в диаметре и доставлялась на место опыта 60-футовыми секциями.

Посредством многократного отражения свет должен был проходить расстояние в 8 миль, вымеренное с точностью до одной  миллионной. Во всей системе создавалось  разрежение, равное одной полуторатысячной части земной атмосферы. Выкачивание воздуха продолжалось 48 часов. Все время то одна, то другая часть выходила из строя, вакуум нарушался, и приходилось начинать снова. 

Если  первый прибор в Аннаполисе стоил 10 долларов, то эта система обошлась в 50 тысяч долларов. Это был самый  грандиозный проект Майкельсона. В то время как шла работа, здоровье его начало сдавать. Пирсон произвел непосредственные измерения под руководством Майкельсона.

В 1930 году были произведены сотни наблюдений. Всего было поставлено почти 3 тысячи опытов. Скорость света в вакууме оказалась равной в среднем 299774 километрам в секунду. Научная статья, написанная Майкельсоном перед смертью, называлась точно так же, как и его первая работа, напечатанная в 1878 году в Аннаполисе «О методе измерения скорости света».

 

 


Информация о работе Развитие взглядов на природу света и первые открытия в области физической оптики