Автор работы: Пользователь скрыл имя, 09 Апреля 2012 в 12:31, шпаргалка
Работа содержит ответы на вопросы по предмету "Физика".
Данный метод реализован в индикаторе поля ЕН-1, который имеет две встроенные антенны (магнитную и электрическую) [6]. Прибор способен обнаруживать сигналы с шириной спектра не более 250 МГц в диапазоне частот от 300 до 2700 МГц. При этом дальность обнаружения сигнала передатчика с мощностью излучения 10 мВт, работающего на частоте 400 МГц, составляет 0,4 м. При работе в сложной помеховой обстановке могут использоваться индикаторы поля, имеющие в своем составе режекторные фильтры или фильтры высоких частот Центральная частота режекторного фильтра настраивается на частоту излучения одной из мощных станций, работающих в данном районе (например, телевизионной, радиовещательной, радиорелейной станции, базовой станции системы сотовой связи и т.д.), или на центральную частоту частотного поддиапазона (например, FM-диапазона (УКВ-2) работы радиовещательных станций). Выбором того или иного режекторного фильтра оператор добивается максимального ослабления помехового сигнала. Но при этом надо помнить, что частота радиозакладки может находиться в полосе режекции фильтра. Фильтры высоких частот также используются для ослабления влияния мощных радиопередатчиков, работающих в метровом диапазоне частот, чаще всего - радиовещательных станций и телевизионных передатчиков, работающих в диапазоне частот до 300 МГц.
Современные индикаторы поля оборудуются специальными блоками, которые позволяют идентифицировать сигналы типа GSM, DECT, W-LAN, Bluetooth и т.п. Для идентификации обнаруженных сигналов некоторые индикаторы поля имеют две строки отображения уровня сигнала, на одной из которых (как правило, верхней) отображается усреднённый уровень принимаемых сигналов, а на другой (как правило, нижней) - пиковый (максимальный) уровень сигнала. При этом основной вклад в уровень сигналов на верхней строке индикатора вносят непрерывные сигналы с амплитудной и частотной модуляцией, а в нижней -импульсные сигналы типа DECT, GSM, W-LAN и т.п. По назначению индикаторы поля можно разделить на поисковые, сторожевые (пороговые) и комбинированные. Поисковые индикаторы поля предназначены для выявления (поиска) ЗУ, внедрённых в защищаемые помещения, и выпускаются в обычном исполнении. Отличительными особенностями поисковых приборов являются наличие индикатора уровня сигнала или звукового генератора с изменяющейся в зависимости от уровня принимаемого сигнала частотой и сравнительно большой динамический диапазон. Наиболее простые индикаторы поля имеют минимальное количество органов управления. Это, как правило, - регулятор чувствительности индикатора (установки нулевого уровня сигнала) и регулятор уровня громкости продетектированного сигнала. К таким приборам относятся индикаторы поля типа ЕН-1, Protect-1206, ST 006, Sig-Net Mobile, Delta VECM и др.
4) ЛИНИИ МАГНИТНОЙ ИНДУКЦИИ
- это линии, касательными к которой в любой её точке является вектор магнитной индукции.
Однородное магнитное поле - это магнитное поле, у которого в любой его точке вектор магнитной индукции неизменен по величине и направлению; наблюдается между пластинами плоского конденсатора, внутри соленоида (если его диаметр много меньше его длины) или внутри полосового магнита.
5) Магни́тный пото́к — поток как интеграл вектора магнитной индукции через конечную поверхность . Определяется через интеграл по поверхности
при этом векторный элемент площади поверхности определяется как
где — единичный вектор, нормальный к поверхности.
Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади:
где α — угол между вектором магнитной индукции и нормалью к плоскости площади.
Магнитный поток через контур также можно выразить через циркуляцию векторного потенциала магнитного поля по этому контуру:
6,7) Закон Ампера устанавливает, что на проводник с током, помещенный в однородное магнитное поле, индукция которого В, действует сила, пропорциональная силе тока и индукции магнитного поля:
F = BIlsina (a - угол между направлением тока и индукцией магнитного поля ). Эта формула закона Ампера оказывается справедливой для прямолинейного проводника и однородного поля.
Если проводник имеет произвольную формулу и поле неоднородно, то Закон Ампера принимает вид:
dF = I*B*dlsina
Закон Ампера в векторной форме:
dF = I [dl B]
Сила Ампера направлена перпендикулярно плоскости, в которой лежат векторы dl и B.
Для определения направления силы, действующей на проводник с током, помещенный в магнитное поле, применяется правило левой руки.
Правило левой руки для определения направления силы, действующей на проводник с током, помещенный в магнитное поле
Правило левой руки Если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а вытянутые четыре пальца совпадали с направлением тока в проводнике, то отогнутый большой палец укажет направление силы, действующей на проводник с током, помещенный в магнитное поле.
Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I, находящийся в магнитном поле B,
F = IBΔl sin α |
может быть выражена через силы, действующие на отдельные носители заряда. Пусть концентрация носителей свободного заряда в проводнике есть n, а q – заряд носителя. Тогда произведение nqυS, где υ – модуль скорости упорядоченного движения носителей по проводнику, а S – площадь поперечного сечения проводника, равно току, текущему по проводнику:
I = qnυS. |
Выражение для силы Ампера можно записать в виде:
F = qnSΔlυB sin α. |
Так как полное число N носителей свободного заряда в проводнике длиной Δl и сечением S равно nSΔl, то сила, действующая на одну заряженную частицу, равна
|
Эту силу называют силой Лоренца. Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика. Взаимное расположение векторов , и для положительно заряженной частицы показано на рис. 4.18.1.
1 |
Рисунок 4.18.1. Взаимное расположение векторов , и Модуль силы Лоренца численно равен площади параллелограмма, построенного на векторах и помноженной на заряд q. |
Сила Лоренца направлена перпендикулярно векторам и При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает. Поэтому модуль вектора скорости при движении частицы не изменяется. Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору то частица будет двигаться по окружности радиуса
Сила Лоренца в этом случае играет роль центростремительной силы (рис. 4.18.2).
2 |
Рисунок 4.18.2. Круговое движение заряженной частицы в однородном магнитном поле. |
Период обращения частицы в однородном магнитном поле равен
Это выражение показывает, что для заряженных частиц заданной массы m период обращения не зависит от скорости υ и радиуса траектории R. Угловая скорость движения заряженной частицы по круговой траектории
называется циклотронной частотой. Циклотронная частота не зависит от скорости (следовательно, и от кинетической энергии) частицы. Это обстоятельство используется в циклотронах – ускорителях тяжелых частиц (протонов, ионов). Принципиальная схема циклотрона приведена на рис. 4.18.3.
3 |
Рисунок 4.18.3. Движение заряженных частиц в вакуумной камере циклотрона. |
Между полюсами сильного электромагнита помещается вакуумная камера, в которой находятся два электрода в виде полых металлических полуцилиндров (дуантов). К дуантам приложено переменное электрическое напряжение, частота которого равна циклотронной частоте. Заряженные частицы инжектируются в центре вакуумной камеры. Частицы ускоряются электрическим полем в промежутке между дуантами. Внутри дуантов частицы движутся под действием силы Лоренца по полуокружностям, радиус которых растет по мере увеличения энергии частиц.
Каждый раз, когда частица пролетает через зазор между дуантами, она ускоряется электрическим полем. Таким образом, в циклотроне, как и во всех других ускорителях, заряженная частица ускоряется электрическим полем, а удерживается на траектории магнитным полем. Циклотроны позволяют ускорять протоны до энергии порядка 20 МэВ. Однородные магнитные поля используются во многих приборах и, в частности, в масс-спектрометрах – устройствах, с помощью которых можно измерять массы заряженных частиц – ионов или ядер различных атомов.
Масс-спектрометры используются для разделения изотопов, то есть ядер атомов с одинаковым зарядом, но разными массами (например, 20Ne и 22Ne). Простейший масс-спектрометр показан на рис. 4.18.4. Ионы, вылетающие из источника S, проходят через несколько небольших отверстий, формирующих узкий пучок. Затем они попадают в селектор скоростей, в котором частицы движутся в скрещенных однородных электрическом и магнитном полях. Электрическое поле создается между пластинами плоского конденсатора, магнитное поле – в зазоре между полюсами электромагнита. Начальная скорость заряженных частиц направлена перпендикулярно векторам и На частицу, движущуюся в скрещенных электрическом и магнитном полях, действуют электрическая сила и магнитная сила Лоренца. При условии E = υB эти силы точно уравновешивают друг друга. Если это условие выполняется, частица будет двигаться равномерно и прямолинейно и, пролетев через конденсатор, пройдет через отверстие в экране. При заданных значениях электрического и магнитного полей селектор выделит частицы, движущиеся со скоростью υ = E / B. Далее частицы с одним и тем же значением скорости попадают в камеру масс-спектрометра, в которой создано однородное магнитное поле Частицы движутся в камере в плоскости, перпендикулярной магнитному полю, под действием силы Лоренца. Траектории частиц представляют собой окружности радиусов R = mυ / qB'. Измеряя радиусы траекторий при известных значениях υ и B' можно определить отношение q / m. В случае изотопов (q1 = q2) масс-спектрометр позволяет разделить частицы с разными массами. Современные масс-спектрометры позволяют измерять массы заряженных частиц с точностью выше 10–4.
4 |
Рисунок 4.18.4. Селектор скоростей и масс-спектрометр. |
Если скорость частицы имеет составляющую вдоль направления магнитного поля, то такая частица будет двигаться в однородном магнитном поле по спирали. При этом радиус спирали R зависит от модуля перпендикулярной магнитному полю составляющей υ┴ вектора а шаг спирали p – от модуля продольной составляющей υ|| (рис. 4.18.5).
5 |
Рисунок 4.18.5. Движение заряженной частицы по спирали в однородном магнитном поле. |
Таким образом, траектория заряженной частицы как бы навивается на линии магнитной индукции. Это явление используется в технике для магнитной термоизоляции высокотемпературной плазмы, то есть полностью ионизированного газа при температуре порядка 106 K. Вещество в таком состоянии получают в установках типа «Токамак» при изучении управляемых термоядерных реакций. Плазма не должна соприкасаться со стенками камеры. Термоизоляция достигается путем создания магнитного поля специальной конфиругации. В качестве примера на рис. 4.18.6 изображена траектория движения заряженной частицы в магнитной «бутылке» (или ловушке).
6 |
Рисунок 4.18.6. Магнитная «бутылка». Заряженные частицы не выходят за пределы «бутылки». Магнитное поле «бутылки» может быть создано с помощью двух круглых катушек с током. |
Аналогичное явление происходит в магнитном поле Земли, которое является защитой для всего живого от потоков заряженных частиц из космического пространства. Быстрые заряженные частицы из космоса (главным образом от Солнца) «захватываются» магнитным полем Земли и образуют так называемые радиационные пояса (рис. 4.18.7), в которых частицы, как в магнитных ловушках, перемещаются туда и обратно по спиралеобразным траекториям между северным и южным магнитными полюсами за времена порядка долей секунды. Лишь в полярных областях некоторая часть частиц вторгается в верхние слои атмосферы, вызывая полярные сияния. Радиационные пояса Земли простираются от расстояний порядка 500 км до десятков земных радиусов. Следует вспомнить, что южный магнитный полюс Земли находится вблизи северного географического полюса (на северо-западе Гренландии). Природа земного магнетизма до сих пор не изучена.
8) Ферромагнетики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое, при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля. Последние исследования в области физики показали, что некоторые ферромагнетики, при создании определенных условий, могут приобретать парамагнетические свойства при температурах, которые существенно выше точки Кюри. Поэтому ферромагнетики, наряду со многими другими магнетическими веществами, остаются, как оказалось, плохо изученными веществами до сих пор.