Создание моделей атома и его роль в развитии ядерной физики

Автор работы: Пользователь скрыл имя, 16 Февраля 2012 в 19:59, реферат

Описание

Атомная физика раздел физики, в котором изучают строение и состояние атомов. Атомная физика возникла в конце конце XIX — начале XX вв. В 10-х гг. ХХ в. было установлено, что атом состоит из ядра и электронов, связанных электрическими силами. На первом этапе своего развития атомная физика охватывала также вопросы, связанные со строением атомного ядра. В 30-х гг. выяснилось, что природа взаимодействий, имеющих место в атомном ядре, иная, чем во внешней оболочке атома, и в 40-х гг. ядерная физика выделилась в самостоятельную область науки. В 50-х гг. от неё отпочковалась физика элементарных частиц, или физика высоких энергий.

Содержание

Введение 3
Учение об атомах в XVII - XIX вв
4
Возникновение атомной физики
5
Создание резерфордом планетарной модели атома
8
Постулаты бора и модель атома бора
11
Развитие модельной теории атома бора
14
Квантовомеханическая теория атома
16
Современная атомная физика
18
Заключение 21
Литература

Работа состоит из  1 файл

Атомная физика.docx

— 58.16 Кб (Скачать документ)

       Такой статической моделью был атом Кельвина — Томсона. И эта модель была общепринятой по причинам, указанным Вином.

       Модель  атома как планетной системы  приходила в голову многим: о ней  писал Л. Пуанкаре, о ней говорили и Вин, и Перрен, который в своем  нобелевском докладе причислял себя к пионерам планетарной модели атома. Но эта модель наталкивалась на непреодолимую трудность, о которой говорил Вин, и поэтому уступила место модели Кельвина — Томсона.

       Но  вскоре оказалось, что новые опытные  факты опровергают модель Томсона  и, наоборот, свидетельствуют в пользу планетарной модели, факты эти были открыты Резерфордом.2 

СОЗДАНИЕ  РЕЗЕРФОРДОМ ПЛАНЕТАРНОЙ  МОДЕЛИ АТОМА 

       Модель  атома Томсона оказалась неудовлетворительной. На её основе не удалось объяснить  совершенно неожиданный результат  опытов английского физика Э. Резерфорда и его сотрудников Х. Гейгера и Э. Марсдена по рассеянию α-частиц атомами. В этих опытах быстрые α-частицы были применены для прямого зондирования атомов. Проходя через вещество, α-частицы сталкиваются с атомами. При каждом столкновении α-частица, пролетая через электрическое поле атома, изменяет направление движения - испытывает рассеяние. В подавляющем большинстве актов рассеяния отклонения α-частиц (углы рассеяния) были очень малы. Поэтому при прохождении пучка α-частиц через тонкий слой вещества происходило лишь небольшое размытие пучка. Однако очень малая доля α-частиц отклонялась на углы более 90°. Этот результат нельзя было объяснить на основе модели Томсона, т.к. электрическое поле в "сплошном" атоме недостаточно сильно, чтобы отклонить быструю и массивную α-частицу на большой угол. Чтобы объяснить результаты опытов по рассеянию α-частиц, Резерфорд предложил принципиально новую модель атома, напоминающую по строению Солнечную систему и получившую название планетарной. Она имеет следующий вид. В центре атома находится положительно заряженное ядро, размеры которого (~10-12см) очень малы по сравнению с размерами атома (~10-8 см), а масса почти равна массе атома. Вокруг ядра движутся электроны, подобно планетам вокруг Солнца; число электронов в незаряженном (нейтральном) атоме таково, что их суммарный отрицательный заряд компенсирует (нейтрализует) положительный заряд ядра. Электроны должны двигаться вокруг ядра, в противном случае они упали бы на него под действием сил притяжения. Различие между атомом и планетной системой состоит в том, что в последней действуют силы тяготения, а в атоме - электрические (кулоновские) силы. Вблизи ядра, которое можно рассматривать как точечный положительный заряд, существует очень сильное электрическое поле. Поэтому, пролетая вблизи ядра, положительно заряженные α-частицы (ядра гелия) испытывают сильное отклонение. В дальнейшем было выяснено (Г. Мозли), что заряд ядра возрастает от одного химического элемента к другому на элементарную единицу заряда, равную заряду электрона (но с положительным знаком). Численно заряд ядра атома, выраженный в единицах элементарного заряда е, равен порядковому номеру соответствующего элемента в периодической системе.

       Для проверки планетарной модели Резерфорд  и его сотрудник Ч. Дарвин подсчитали угловое распределение α-частиц, рассеянных точечным ядром - центром кулоновских сил. Полученный результат был проверен опытным путём - измерением числа α-частиц, рассеянных под разными углами. Результаты опыта в точности совпали с теоретическими расчётами, блестяще подтвердив тем самым планетарную модель атома Резерфорда.3

       Однако  планетарная модель атома натолкнулась на принципиальные трудности. Согласно классической электродинамике, заряженная частица, движущаяся с ускорением, непрерывно излучает электромагнитную энергию. Поэтому электроны, двигаясь вокруг ядра, т. е. ускоренно, должны были бы непрерывно терять энергию на излучение. Но при этом они за ничтожную долю секунды потеряли бы всю свою кинетическую энергию и упали бы на ядро. Другая трудность, связанная также с излучением, состояла в следующем: если принять (в соответствии с классической электродинамикой), что частота излучаемого электроном света равна частоте колебаний электрона в атоме (т. е. числу оборотов, совершаемых им по своей орбите в одну секунду) или имеет кратное ей значение, то излучаемый свет по мере приближения электрона к ядру должен был бы непрерывно изменять свою частоту, и спектр излучаемого им света должен быть сплошным. Но это противоречит опыту. Атом излучает световые волны вполне определённых частот, типичных для данного химического элемента, и характеризуется спектром, состоящим из отдельных спектральных линий - линейчатым спектром. В линейчатых спектрах элементов был экспериментально установлен ряд закономерностей, первая из которых была открыта швейцарским учёным И. Бальмером (1885) в спектре водорода. Наиболее общая закономерность - комбинационный принцип - была найдена австрийским учёным В. Ритцем (1908). Этот принцип можно сформулировать следующим образом: для атомов каждого элемента можно найти последовательность чисел T1, T2, T3,... - т. н. спектральных термов, таких, что частота v каждой спектральной линии данного элемента выражается в виде разности двух термов: v = Tk - Ti. Для атома водорода терм Tn = R/n2, где n - целое число, принимающее значение n = 1, 2, 3,..., a R - т. н. постоянная Ридберга

       Таким образом, в рамках модели атома Резерфорда не могли быть объяснены устойчивость атома по отношению к излучению и линейчатые спектры его излучения. На её основе не могли быть объяснены и законы теплового излучения, и законы фотоэлектрических явлений, которые возникают при взаимодействии излучения с веществом. Эти законы оказалось возможным объяснить, исходя из совершенно новых - квантовых- представлений, впервые введённых немецким физиком М. Планком (1900). Для вывода закона распределения энергии в спектре теплового излучения - излучения нагретых тел - Планк предположил, что атомы вещества испускают электромагнитную энергию (свет) в виде отдельных порций - квантов света, энергия которых пропорциональна v (частоте излучения): E = hv, где h - постоянная, характерная для квантовой теории и получившая название постоянной Планка.

       В 1905 А. Эйнштейн дал квантовое объяснение фотоэлектрических явлений, согласно которому энергия кванта hv идёт на вырывание электрона из металла -работа выхода А - и на сообщение ему кинетическую энергии Ткин; hv = А + Tкин. При этом Эйнштейн ввёл понятие о квантах света как особого рода частицах; эти частицы впоследствии получили название фотонов.

       Противоречия  модели Резерфорда оказалось возможным  разрешить, лишь отказавшись от ряда привычных представлений классической физики. Важнейший шаг в построении теории атома был сделан датским  физиком Н. Бором (1913).4 

       ПОСТУЛАТЫ БОРА И МОДЕЛЬ АТОМА  БОРА 

       В основу квантовой теории атома Бор  положил 2 постулата, характеризующих те свойства атома, которые не укладывались в рамки классической физики. Эти постулаты Бора могут быть сформулированы следующим образом:

  1. Существование стационарных состояний.

    Атом  не излучает и является устойчивым лишь в некоторых стационарных (неизменных во времени) состояниях, соответствующих  дискретному (прерывному) ряду "дозволенных" значений энергии E1, E2, E3, E4,... Любое изменение энергии связано с квантовым (скачкообразным) переходом из одного стационарного состояния в другое.

  1. Условие частот излучения (квантовых переходов с излучением).

    При переходе из одного стационарного состояния  с энергией Ei в другое с энергией Ek атом испускает или поглощает свет определённой частоты v в виде кванта излучения (фотона) hv, согласно соотношению hv = Ei - Ek. При испускании атом переходит из состояния с большей энергией Ei в состояние с меньшей энергией Ek, при поглощении, наоборот, из состояния с меньшей энергией Ek в состояние с большей энергией Ei.

       Постулаты Бора сразу позволяют понять физический смысл комбинационного принципа Ритца (см. выше); сравнение соотношений hv = Ei - Ek и v= Tk - T показывает, что спектральные термы соответствуют стационарным состояниям, и энергия последних должна равняться (с точностью до постоянного слагаемого) Ei = - hTi, Ek =- hTk.

       При испускании или поглощении света  изменяется энергия атома, это изменение  равно энергии испущенного или  поглощённого фотона, т. е. имеет место  закон сохранения энергии. Линейчатый спектр атома является результатом дискретности возможных значений его энергии.

       Для определения дозволенных значений энергии атома - квантования его  энергии - и для нахождения характеристик  соответствующих стационарных состояний Бор применил классическую (ньютоновскую) механику. "Если мы желаем вообще составить наглядное представление о стационарных состояниях, у нас нет других средств, по крайней мере сейчас, кроме обычной механики", - писал Бор в 1913 ("Три статьи о спектрах и строении атомов", М.-Л., 1923, с. 22). Для простейшего атома - атома водорода, состоящего из ядра с зарядом +е (протона) и электрона с зарядом -e, Бор рассмотрел движение электрона вокруг ядра по круговым орбитам. Сравнивая энергию атома Е со спектральными термами Tn = R/n2 для атома водорода, найденными с большой точностью из частот его спектральных линий, он получил возможные значения энергии атома En = -hTn = -hR/n2(где n = 1, 2, 3,...). Они соответствуют круговым орбитам радиуса аn = а0n2, где a0 = 0,53Ї10-8 см - боровский радиус - радиус наименьшей круговой орбиты (при n=1). Бор вычислил частоты обращения v электрона вокруг ядра по круговым орбитам в зависимости от энергии электрона. Оказалось, что частоты излучаемого атомом света не совпадают с частотами обращения vn, как этого требует классическая электродинамика, а пропорциональны, согласно соотношению hv=Ei-Ek, разности энергий электрона на двух возможных орбитах.

       Для нахождения связи частоты обращения  электрона по орбите и частоты излучения Бор сделал предположение, что результаты квантовой и классической теорий должны совпадать при малых частотах излучения (для больших длин волн; такое совпадение имеет место для теплового излучения, законы которого были выведены Планком). Он приравнял для больших n частоту перехода v = (En+1 - En)/h частоте обращения vn по орбите с данным n и вычислил значение постоянной Ридберга R, которое с большой точностью совпало со значением R, найденным из опыта, что подтвердило боровское предположение. Бору удалось также не только объяснить спектр водорода, но и убедительно показать, что некоторые спектральные линии, которые приписывались водороду, принадлежат гелию. Предположение Бора о том, что результаты квантовой и классической теорий должны совпадать в предельном случае малых частот излучения, представляло первоначальную форму т. н. принципа соответствия. В дальнейшем Бор успешно применил его для нахождения интенсивностей линий спектра. Как показало развитие современной физики, принцип соответствия оказался весьма общим.

       В теории атома Бора квантование энергии, т. е. нахождение её возможных значений, оказалось частным случаем общего метода нахождения "дозволенных" орбит. Согласно квантовой теории, такими орбитами являются только те, для которых момент количества движения электрона в атоме равен целому кратному h/2p. Каждой дозволенной орбите соответствует определённое возможное значение энергии атома.5

       Основные  положения квантовой теории атома - 2 постулата Бора - были всесторонне  подтверждены экспериментально. Особенно наглядное подтверждение дали опыты немецких физиков Дж. Франка и Г. Герца (1913-16). Суть этих опытов такова. Поток электронов, энергией которых можно управлять, попадает в сосуд, содержащий пары ртути. Электронам сообщается энергия, которая постепенно повышается. По мере увеличения энергии электронов ток в гальванометре, включенном в электрическую цепь, увеличивается; когда же энергия электронов оказывается равной определённым значениям (4,9; 6,7; 10,4 эв), ток резко падает. Одновременно можно обнаружить, что пары ртути испускают ультрафиолетовые лучи определённой частоты.

       Изложенные  факты допускают только одно истолкование. Пока энергия электронов меньше 4,9 эв, электроны при столкновении с атомами ртути не теряют энергии - столкновения имеют упругий характер. Когда же энергия оказывается равной определённому значению, именно 4,9 эв, электроны передают свою энергию атомам ртути, которые затем испускают её в виде квантов ультрафиолетового света. Расчёт показывает, что энергия этих фотонов равна как раз той энергии, которую теряют электроны. Эти опыты доказали, что внутренняя энергия атома может иметь только определённые дискретные значения, что атом поглощает энергию извне и испускает её сразу целыми квантами и что, наконец, частота испускаемого атомом света соответствует теряемой атомом энергии.

       Дальнейшее  развитие Атомной физики показало справедливость постулатов Бора не только для атомов, но и для других микроскопических систем - для молекул и для атомных ядер. Эти постулаты следует рассматривать как твёрдо установленные опытные квантовые законы. Они составляют ту часть теории Бора, которая не только сохранилась при дальнейшем развитии квантовой теории, но и получила своё обоснование. Иначе обстоит дело с моделью атома Бора, основанной на рассмотрении движения электронов в атоме по законам классической механики при наложении дополнительных условий квантования. Такой подход позволил получить целый ряд важных результатов, но был непоследовательным: квантовые постулаты были присоединены к законам классической механики искусственно. Последовательной теорией явилась созданная в 20-х гг. 20 в. квантовая механика. Её создание было подготовлено дальнейшим развитием модельных представлений теории Бора, в ходе которого выяснились её сильные и слабые стороны.6 

Информация о работе Создание моделей атома и его роль в развитии ядерной физики