Автор работы: Пользователь скрыл имя, 13 Марта 2012 в 15:26, реферат
Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продуктов, технологическим средством и т.д.
Прекрасный миф о Прометее, даровавшем людям огонь, появился в Древней Греции значительно позже того, как во многих частях света были освоены методы довольно изощренного обращения с огнем, его получением и тушением, сохранением огня и рациональным использованием топлива.
Введение.
1. Производство электроэнергии.
типы электростанций.
альтернативные источники энергии.
2. Передача электроэнергии.
трансформаторы.
3. Использование электроэнергии.
Наиболее часто на АЭС применяют 4 типа реакторов на тепловых нейтронах:
1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя;
2) графитоводные с водяным теплоносителем и графитовым замедлителем;
3) тяжеловодные с водяным
теплоносителем и тяжёлой
4) граффито - газовые с
газовым теплоносителем и
Выбор преимущественно
применяемого типа реактора
К реактору и обслуживающим
его системам относятся:
Для предохранения
персонала АЭС от
Наличие биологической
защиты, систем специальной вентиляции
и аварийного расхолаживания
и службы дозиметрического
АЭС, являющиеся наиболее современным
видом электростанций, имеют ряд
существенных преимуществ перед
другими видами электростанций: при
нормальных условиях функционирования
они абсолютно не загрязняют окружающую
среду, не требуют привязки к источнику
сырья и соответственно могут
быть размещены практически везде.
Новые энергоблоки имеют
Значительных недостатков
АЭС при нормальных условиях функционирования
практически не имеют. Однако нельзя
не заметить опасность АЭС при
возможных форс-мажорных обстоятельствах:
землетрясениях, ураганах, и т. п. - здесь
старые модели энергоблоков представляют
потенциальную опасность
Альтернативные источники энергии.
Энергия солнца.
В последнее время интерес
к проблеме использования солнечной
энергии резко возрос, ведь потенциальные
возможности энергетики, основанной
на использование
Простейший коллектор
солнечного излучения представляет
собой зачерненный
Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а, следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовления гелиостатов, коллекторов, другой аппаратуры, их перевозки.
Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.
Ветровая энергия.
Огромна энергия движущихся
воздушных масс. Запасы энергии ветра
более чем в сто раз превышают
запасы гидроэнергии всех рек планеты.
Постоянно и повсюду на земле
дуют ветры. Климатические условия
позволяют развивать
Но в наши дни двигатели,
использующие ветер, покрывают всего
одну тысячную мировых потребностей
в энергии. Потому к созданию конструкций
ветроколеса-сердца любой ветроэнергетической
установки привлекаются специалисты-самолетостроители,
умеющие выбрать наиболее целесообразный
профиль лопасти, исследовать его
в аэродинамической трубе. Усилиями
ученых и инженеров созданы самые
разнообразные конструкции
Энергия Земли.
Издавна люди знают о стихийных
проявлениях гигантской энергии, таящейся
в недрах земного шара. Память человечества
хранит предания о катастрофических
извержениях вулканов, унесших миллионы
человеческих жизней, неузнаваемо изменивших
облик многих мест на Земле. Мощность
извержения даже сравнительно небольшого
вулкана колоссальна, она многократно
превышает мощность самых крупных
энергетических установок, созданных
руками человека. Правда, о непосредственном
использовании энергии
Энергия Земли пригодна не
только для отопления помещений,
как это происходит в Исландии,
но и для получения
Передача электроэнергии.
Трансформаторы.
Вы приобрели холодильник ЗИЛ. Продавец вас предупредил, что холодильник рассчитан на напряжение в сети 220 В. А у вас в доме сетевое напряжение 127 В. Безвыходное положение? Ничуть. Просто придется сделать дополнительную затрату и приобрести трансформатор.
Трансформатор — очень
простое устройство, которое позволяет,
как повышать, так и понижать напряжение.
Преобразование переменного тока осуществляется
с помощью трансформаторов. Впервые
трансформаторы были использованы в 1878
г. русским ученым П. Н. Яблочковым для
питания изобретенных им «электрических
свечей» — нового в то время
источника света. Идея П. Н. Яблочкова
была развита сотрудником
Трансформатор состоит из замкнутого железного сердечника, на который надеты две (иногда и более) катушки с проволочными обмотками (рис. 1). Одна из обмоток, называемая первичной, подключается к источнику переменного напряжения. Вторая обмотка, к которой присоединяют «нагрузку», т. е. приборы и устройства, потребляющие электроэнергию, называется вторичной.
Рис.1 Рис.2
Схема устройства трансформатора с двумя обмотками приведена на рисунке 2, а принятое для него условное обозначение — на рис. 3.
Рис. 3.
Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в железном сердечнике появляется переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке. Причем мгновенное значение ЭДС индукции е в любом витке первичной или вторичной обмотки согласно закону Фарадея определяется формулой:
е = - Δ Ф/ Δ t
Если Ф = Ф0 соsωt, то
е = ω Ф0 sinωt, или
е = E0 sinωt ,
где E0= ω Ф0 - амплитуда ЭДС в одном витке.
В первичной обмотке, имеющей п1 витков, полная ЭДС индукции e1 равна п1е.
Во вторичной обмотке полная ЭДС. е2 равна п2е, где п2 - число витков этой обмотки.
Отсюда следует, что
e1 е2 = п1 п2. (1)
Сумма напряжения u1, приложенного
к первичной обмотке, и ЭДС
e1 должна равняться падению
u1 + e1 = i1 R1, где R1 - активное
сопротивление обмотки, а i1 - сила
тока в ней. Данное уравнение
непосредственно вытекает из
общего уравнения. Обычно
u1 ≈ - e1. (2)
При разомкнутой вторичной обмотке трансформатора ток в ней не течет, и имеет место соотношение:
u2 ≈ - e2. (3)
Так как мгновенные значения ЭДС e1 и e2 изменяются синфазно, то их отношение в формуле (1) можно заменить отношением действующих значений E1 и E2 этих ЭДС или, учитывая равенства (2) и (3), отношением действующих значений напряжений U1 и U2.
U1/U2 = E1/E2 = n1/ n2= k. (4)
Величина k называется коэффициентом трансформации. Если k>1, то трансформатор является понижающим, при k<1 - повышающим.
При замыкании цепи вторичной обмотки в ней течет ток. Тогда соотношение u2 ≈ - e2 уже не выполняется точно, и соответственно связь между U1 и U2 становится более сложной, чем в уравнении (4).
Согласно закону сохранения энергии, мощность в первичной цепи должна равняться мощности во вторичной цепи:
U1I1 = U2I2, (5)
где I1 и I2 — действующие значения силы в первичной и вторичной обмотках.
Отсюда следует, что
U1/U2 = I1/I2 . (6)
Это означает, что, повышая
с помощью трансформатора
Вследствие неизбежных потерь энергии на выделение тепла в обмотках и железном сердечнике уравнения (5) и (6) выполняются приближенно. Однако в современных мощных трансформаторах суммарные потери не превышают 2—3%.
В житейской практике часто приходится иметь дело с трансформаторами. Кроме тех трансформаторов, которыми мы пользуемся волей-неволей из-за того, что промышленные приборы рассчитаны на одно напряжение, а в городской сети используется другое, — кроме них приходится иметь дело с бобинами автомобиля. Бобина — это повышающий трансформатор. Для создания искры, поджигающей рабочую смесь, требуется высокое напряжение, которое мы и получаем от аккумулятора автомобиля, предварительно превратив постоянный ток аккумулятора в переменный с помощью прерывателя. Нетрудно сообразить, что с точностью до потерь энергии, идущей на нагревание трансформатора, при повышении напряжения уменьшается сила тока, и наоборот.
Для сварочных аппаратов требуются понижающие трансформаторы. Для сварки нужны очень сильные токи, и трансформатор сварочного аппарата имеет всего лишь один выходной виток.
Вы, наверное, обращали внимание, что сердечник трансформатора изготовляют из тонких листиков стали. Это сделано для того, чтобы не терять энергии при преобразовании напряжения. В листовом материале вихревые токи будут играть меньшую роль, чем в сплошном.
Дома вы имеете дело с маленькими трансформаторами. Что же касается мощных трансформаторов, то они представляют собой огромные сооружения. В этих случаях сердечник с обмотками помещен в бак, заполненный охлаждающим маслом.
Передача электроэнергии
Потребители электроэнергии
имеются повсюду. Производится
же она в сравнительно
Но передача электроэнергии на большие расстояния связана с заметными потерями. Дело в том, что, протекая по линиям электропередачи, ток нагревает их. В соответствии с законом Джоуля — Ленца, энергия, расходуемая на нагрев проводов линии, определяется формулой
Q=I2Rt
где R — сопротивление линии. При большой длине линии передача энергии может стать вообще экономически невыгодной. Для уменьшения потерь можно, конечно, идти по пути уменьшения сопротивления R линии посредством увеличения площади поперечного сечения проводов. Но для уменьшения R, к примеру, в 100 раз нужно увеличить массу провода также в 100 раз. Ясно, что нельзя допустить такого большого расходования дорогостоящего цветного металла, не говоря уже о трудностях закрепления тяжелых проводов на высоких мачтах и т. п. Поэтому потери энергии в линии снижают другим путем: уменьшением тока в линии. Например, уменьшение тока в 10 раз уменьшает количество выделившегося в проводниках тепла в 100 раз, т. е. достигается тот же эффект, что и от стократного утяжеления провода.
Так как мощность тока пропорциональна произведению силы тока на напряжение, то для сохранения передаваемой мощности нужно повысить напряжение в линии передачи. Причем, чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Так, например, в высоковольтной линии передачи Волжская ГЭС — Москва используют напряжение в 500 кв. Между тем генераторы переменного тока строят на напряжения, не превышающие 16—20 кв., так как более высокое напряжение потребовало бы принятия более сложных специальных мер для изоляции обмоток и других частей генераторов.
Поэтому на крупных электростанциях ставят повышающие трансформаторы. Трансформатор увеличивает напряжение в линии во столько же раз, во сколько уменьшает силу тока. Потери мощности при этом невелики.