Гидролиз углеводов в пищевой промышленности

Автор работы: Пользователь скрыл имя, 23 Февраля 2012 в 14:28, реферат

Описание

Целью работы является изучение гидролиза углеводов в пище. Для достижения цели необходимо выполнить следующие задачи:
- дать определение гидролиза;
- изучить гидролиз моносахаридов;
- изучить гидролиз олигосахаридов (сахароза);
- изучить гидролиз полисахаридов (крахмал);

Содержание

Введение...............................................................................................3
1. Биологическая роль гидролиза в процессе
Жизнедеятельности........................................................................4
2. Гидролиз углеводов........................................................................5
2.1 Гидролиз моносахаридов.........................................................6
2.2 Гидролиз олигосахаридов........................................................7
2.3 Гидролиз полисахаридов..........................................................9
2.3.1 Гидролиз крахмала..........................................................10
2.3.2 Ферментативный гидролиз
некрахмалистых соединений.........................................15
3. Ферментативный гидролиз.............................................................17
3.1 Спиртовое брожение................................................................18
3.2 Молочно-кислое брожение.....................................................19
3.3 Пропионово-кислое брожение................................................22
3.4 Масляно-кислое брожение......................................................22
3.5 Анаэробное разложение клетчатки........................................24
Заключение..........................................................................................25
Список литературы.............................................................................26

Работа состоит из  1 файл

ХИМИЯ ПИЩИ РЕФЕРАТ.doc

— 311.00 Кб (Скачать документ)

При гидролизе крахмала под действием кислот сначала имеет место ослабление и разрыв ассоциативных связей между макромолекулами амилозы и амилопектина. Это сопровождается нарушением структуры крахмальных зерен и образованием гомогенной массы. Далее идет разрыв α-D-(l,4)- и α-D-(1,6)-связей с присоединением по месту разрыва молекулы воды. В процессе гидролиза нарастает число свободных альдегидных групп, уменьшается степень полимеризации. По мере гидролиза и нарастания редуцирующих (восстанавливающих) веществ содержание декстринов уменьшается, глюкозы – увеличивается, концентрация мальтозы, три- и тетрасахаров сначала увеличивается, затем их количество снижается (см. рис. 3.5). Конечным продуктом гидролиза является глюкоза. На промежуточных стадиях образуются декстрины, три- и тетрасахара, мальтоза. Определенному значению глюкозного эквивалента соответствует определенное соотношение этих продуктов, и, варьируя длительностью гидролиза и условиями его проведения, можно получать различные соотношения отдельных продуктов гидролиза при той или иной величине глюкозного эквивалента.

Рисунок 1 – Изменение содержания сахаров при кислотном гидролизе крахмала

Кислотный гидролиз долгое время был главным при получении глюкозы из крахмала. Этот способ имеет ряд существенных недостатков, которые связаны с использованием высоких концентраций кислот и высокой температуры, что приводит к образованию продуктов термической деградации и дегидратации углеводов и реакции трансгликозилирования.

Крахмал гидролизуется также и под действием амилитических ферментов. К группе амилолитических ферментов относятся α- и β-амилаза, глюкоамилаза, пуллуланаза и некоторые другие ферменты. Амилазы бывают двух типов: эндоамилазы и экзоамилазы. Четко выраженной эндоамилазой является α-амилаза, способная к разрыву внутримолекулярных связей в высокополимерных цепях субстрата. Глюкоамилаза и β-амилаза являются экзоамилазами, т. е. ферментами, атакующими субстрат с нередуцирующего конца.

α-Амилаза, действуя на целое крахмальное зерно, атакует его, разрыхляя поверхность и образуя каналы и бороздки, то есть как бы раскалывает зерно на части. Клейстеризованный крахмал гидролизуется ею с образованием не окрашиваемых иодом продуктов – в основном низкомолекулярных декстринов. Процесс гидролиза крахмала многостадийный. В результате воздействия α-амилазы на первых стадиях процесса в гидролизате накапливаются декстрины, затем появляются неокрашиваемые иодом тетра- и тримальтоза, которые очень медленно гидролизуются α-амилазой до ди- и моносахаридов.

 

Рисунок 2 – Гидролиз крахмала а-амилазой

Схему гидролиза крахмала (гликогена) а-амилазой можно представить так:

β-Амилаза (α-1,4-глюканмальтогидролаза) является экзоамилазой, проявляющей сродство к предпоследней α-(1,4)-связи с нередуцирующего конца линейного участка амилозы или амилопектина (см. рис. 3.7). В отличие от α-амилазы, β-амилаза практически не гидролизует нативный крахмал; клейстеризованный крахмал гидролизуется до мальтозы в β-конфигурации. Схему можно записать следующим образом:

Рисунок 3 – Действие β-амилазы на крахмал

Глюкоамилаза α-(1,4)-глюканглюкогидролаза является экзоферментом, катализирующим последовательно отщепление концевых остатков α-D-глюкозы с нередуцирующего конца крахмальной цепи. Многие глюкоамилазы обладают способностью так же быстро, как и α-1,4-связь, гидролизовать α-1,6-глюкозидные связи. Но это происходит только в том случае, когда за α-1,6-связью следует α-1,4-связь, поэтому декстран ими не гидролизуется. Отличительной особенностью глюкоамилаз является способность в десятки раз быстрее гидролизовать высокополимеризованный субстрат, чем олиго- и дисахариды.

Рисунок 4 –  Действие глюкоамилазы на крахмал

Ферментативный гидролиз крахмала присутствует во многих пищевых технологиях как один из необходимых процессов, обеспечивающих качество конечного продукта – в хлебопечении (процесс тестоприготовления и выпечки хлеба), производстве пива (получение пивного сусла, сушка солода), кваса (получение квасных хлебцев), спирта (подготовка сырья для брожения), различных сахаристых крахмалопродуктов (глюкозы, патоки, сахарных сиропов). На рис. 3.9 представлен состав различных сахарных сиропов, полученных кислотно-ферментативным способом – предварительная обработка кислотой, а затем действием ферментов α-, β- и (или) глюкоамилазы. Использование такого комбинированного способа гидролиза крахмала открывает широкие возможности для получения сиропов заданного состава.

 

2.3.2 Ферментативный гидролиз некрахмалистых полисахаридов.

Этот гидролиз имеет место под действием ферментов целлюлолитического, гемицеллюлазного и пектолитического комплекса. Используется в пищевой технологии для более полной переработки сырья и улучшения качества продукции. Например, гидролиз некрахмалистых полисахаридов (пентозанов и др.) при солодоращении имеет значение в последующем для образования окрашенных и ароматических продуктов (при сушке солода и создании определенных органолептических свойств пива). В производстве соков и в виноделии – для осветления, увеличения выхода сока, улучшения условий фильтрации. Гидролиз целлюлозы происходит под действием комплекса целлюлолитических ферментов. По современным представлениям гидролиз целлюлозы под действием ферментов целлюлолитического комплекса можно представить следующим образом:

Гемицеллюлозы вместе с пектиновыми веществами образуют основное вещество клеточных оболочек растений. Гидролиз гемицеллюлоз имеет место под действием обширного комплекса гемицеллюлазных ферментов. Эта группа полисахаридов, разнородная по строению, молекулярной массе и составу, при гидролизе дает довольно разнообразный набор соединений: глюкозу, фруктозу, маннозу, галактозу, ксилозу, арабинозу, глюкуроновую и галактуроновую кислоты. Гидролиз пектиновых веществ имеет место под действием пектолитических ферментов. Пектинэстераза гидролизует сложные эфирные связи в пектиновой кислоте и пектине и отщепляет метиловый спирт. Механизм действия пектинэстеразы можно представить следующим образом:

Полигалактуроназа осуществляет гидролитическое расщепление α-1,4-гликозидных связей в цепи пектиновых веществ и по своему действию на пектиновые вещества разделяется на эндо- и экзоферменты. Протопектиназа – это фермент, действующий на протопектин. Однако вопрос о существовании протопектиназы до последнего времени остается спорным, хотя нельзя отрицать, что при воздействии комплекса пектолитических ферментов на срединные пластинки растительной ткани резко снижается вязкость раствора, уменьшается молекулярная масса пектина без нарастания отщепленных редуцирующих групп. С пектиновыми веществами происходят какие-то превращения, существенно отличающиеся от тех, которые возникают при воздействии известных пектолитических ферментов

 

 

 

 

 

 


3.      Ферментативный гидролиз

 

Брожением называется анаэробный процесс превращения безазотистых органических веществ (главным образом углеводов) микроорганизмами, при котором происходит накопление продуктов неполного окисления (спиртов, органических кислот, углеводов и др.) и который сопровождается выделением энергии. Биологическое значение брожения заключается в образовании энергии для осуществления жизнедеятельности микроорганизмов подобно дыханию животных и растений.

Процессы брожения широко распространены в природе. Микроорганизмы, вызывающие брожение, совершают грандиозную биохимическую работу. С энергетической точки зрения процессы брожения крайне неэкономичны. Но возможно, продукты брожения являются, кроме того, орудиями борьбы между разными видами микробов за место своего обитания, так как микробы - возбудители брожения могут выдерживать большие концентрации продуктов брожения, чем другие виды.

Различают следующие виды брожения по характеру накапливающихся при брожении главных продуктов: молочнокислое, пропионово-кислое, масляно-кислое, ацетоноэтиловое и ацетонобутиловое, анаэробное разложение клетчатки, которые вызываются различными бактериями, и спиртовое брожение, вызываемое главным образом дрожжами.

Аэробные процессы окисления вызываются бактериями и грибами Эти организмы имеют полный набор дыхательных ферментов, благодаря чему водород окисляемого вещества передается молекулярному кислороду, который всегда имеется в среде. Поэтому в энергетическом отношении эти процессы очень эффективны.

К процессам окисления относятся: окисление этилового спирта в уксусную кислоту, окисление жиров, клетчатки, окисление углеводов плесневыми грибами, окисление углеводородов, молекулярного водорода и др.

3.1 Спиртовое брожение

Спиртовым брожением называется превращение микроорганизмами углеводов в этиловый спирт и углекислоту. Химическая схема спиртового брожения без учета промежуточных этапов выражается уравнением С6Н12О6=2СН3СН2ОН+2С02+27 ккал. Это брожение вызывается дрожжами, а также мукоровыми грибами. Впервые дрожжи наблюдал еще А. Левенгук в 1680 г. Но истинную роль дрожжей в спиртовом брожении установил Луи Пастер в 1857 г.

Дрожжи, возбудители этого брожения, - факультативные анаэробы. Как источник азота они используют аминокислоты, пептон, а также аммонийные соли. При развитии в бескислородной среде они получают энергию за счет спиртового брожения, а в аэробных условиях - частично за счет окисления питательных веществ до углекислоты и воды. Это говорит о том, что дрожжевые клетки содержат очень сложный комплекс ферментов. При широком доступе кислорода у дрожжей помимо дыхания параллельно идет и процесс брожения - настолько ферменты дрожжей специализированы в направлении брожения.

Дрожжи широко распространены в природе. Они всегда встречаются на поверхности фруктов и ягод, на листьях. С опадающими фруктами и ягодами дрожжи попадают в почву, где перезимовывают, а затем опять попадают на растения вместе с пылью, а также заносятся насекомыми, птицами. Это гак называемые дикие дрожжи.

Спиртовое брожение широко используется в промышленности: в виноделии, пивоварении, винокурении и хлебопечении. В этих производствах употребляют культурные дрожжи, отличающиеся от диких дрожжей высокой производительностью.

В винокурении и хлебопечении применяются верховые дрожжи Saccharomyces cerevisiae, вызывающие бурное брожение с энергичным газообразованием, образованием поверхностной пены, выделением тепла. Они развиваются при температуре 18-30°. В пивоварении применяются дрожжи низового брожения, которое протекает гораздо спокойнее при более низкой температуре (4-10°), дрожжевые клетки размножаются в нижних слоях и оседают на дно.

Когда в процессе брожения в среде накапливается спирта до 15% и более, брожение прекращается, так как спирт, как отход их жизнедеятельности, является для них вредным продуктом.

При спиртовом брожении кроме спирта и СО2 образуются еще в незначительном количестве сивушные масла и глицерин. Сивушные масла (амиловый и другие спирты) образуются при разложении дрожжами аминокислот и связаны, таким образом, с азотистым питанием дрожжей. При прибавлении к питательной среде сульфитов Na2SО3, СаSО3 увеличивается количество глицерина. В результате из сахара получают 22% спирта и 20% глицерина.

Дрожжи имеют фермент карбоксилазу, под влиянием которого пировиноградная кислота распадается на углекислый газ и уксусный альдегид:

СН3СОСООН=СН3СНО+С02,

из уксусного альдегида образуется спирт за счет восстановления активным водородом:

СН3СНО+2Н=СН3СН2ОН

Современное производство спирта исходит из биологии дрожжей на основе микробиологической техники. Поэтому широко применяется стерилизация и микробиологический контроль. Если в затор (субстрат, подготовленный для брожения) попадут в большом числе бактерии, то они могут испортить все течение брожения.

 

3.2 Молочно-кислое брожение

Скисание молока известно человеку еще с древних времен, но только в 1857 г. Пастером была установлена микробная природа этого брожения. Таким образом, он впервые доказал значение микроорганизмов как возбудителей брожения.

Различают типичное (гомоферментативное) и нетипичное (гетероферментативное) брожение. Типичное молочнокислое брожение - процесс расщепления углеводов (лактозы, мальтозы, сахарозы, глюкозы и др.) с образованием молочной кислоты без побочных продуктов по уравнению С6Н12О6=2С3Н6О3+18 ккал.

В северных широтах возбудителем этого брожения обычно является молочный стрептококк, вызывающий естественное скисание молока. Оптимальная температура для него 30-35°. Вторая группа возбудителей типичного брожения - палочковидные бактерии. Из них болгарская палочка обычно вызывает естественное скисание молока в южных районах. Оптимальная температура для жизнедеятельности около 40°, условный анаэроб. В эту группу входит Thermobacterium cereale. Она приспособлена к усвоению углеводов растительного происхождения - мальтозы и др. Молочный сахар она не разлагает, используется при заводском получении молочной кислоты.

Молочнокислые бактерии требовательны к азоту (они усваивают его только из аминокислот) и к наличию витаминов группы В. Больше всего кислоты образует болгарская палочка (3,2%), затем Thermobacterium cereale (2,2%), молочный стрептококк (0,8-1%). В присутствии нейтрализаторов кислоты накопление молочной кислоты сильно увеличивается.

Первые этапы молочнокислого брожения идут, как и при спиртовом брожении. Но гомоферментативные молочнокислые бактерии не имеют фермента карбоксилазы, поэтому С. П. Костычев полагал, что пировиноградная кислота восстанавливается до молочной:

Информация о работе Гидролиз углеводов в пищевой промышленности