Автор работы: Пользователь скрыл имя, 17 Января 2012 в 15:10, реферат
Растворимость. Это - способность вещества растворятся в том или ином растворителе. Металлы растворяются в сильных кислотах и едких щелочах.
В промышленном производстве наиболее часто употребляется серная, азотная и соляные кислоты, смесь азотной и соляной кислот (царская водка), а также щелочи - едкий натр и едкое кали.
Химические
свойства металлов.
Растворимость. Это - способность вещества растворятся в том или ином растворителе. Металлы растворяются в сильных кислотах и едких щелочах.
В промышленном производстве наиболее часто употребляется серная, азотная и соляные кислоты, смесь азотной и соляной кислот (царская водка), а также щелочи - едкий натр и едкое кали.
Растворение может быть частичным, затрагивающим только поверхностные слои, или полным, когда металл полностью переходит в раствор.
Частичное растворение происходит, например, при травлении изделий для получения гладкой поверхности или для нанесения рисунка на изделие, полное - при растворении цинка в соляной кислоте в целях получения флюса для пайки.
Окисляемость. Она характеризует способность металлов соединяться с кислородом и образовывать оксиды.
Интенсивность
окисления металлов пропорциональна
энтальпии их оксидов (таблица 1). Для сравнения
отметим, что энтальпия монооксида углерода
СО составляет 111 кДЖ/моль.
Таблица 1 - Устойчивость оксидов. Оксид Энтальпия, кДЖ/моль Оксид Энтальпия, кДЖ/моль
CuO 157 MgO 602
FeO 265 TiO 944
ZnO 351 Al2O3 1533
SnO2 581 - -
В ряде случаев образование прочной оксидной пленки на поверхности изделия желательно, так как пленка предохраняет металл от дальнейшего окисления. При пайке и сварке алюминиевых сплавов пленка препятствует соприкосновению припоя с чистой поверхностью металла
Коррозионная стойкость. Это - способность металла сопротивляться разрушению, которое вызвано химическим воздействием окружающее среды.
Чисто химическая коррозия определяется главным образом окислением, электрохимическая коррозия возникает из-за физико-химической неоднородности металлов в присутствии жидкости, способной проводить электрический ток.
Электрохимическая активность металлов характеризуется электронным потенциалом, измеренным относительно водорода (таблица 2).
Таблица 2 - Электрохимический ряд напряжений. Металл Электрический потенциал Металл Электрический потенциал
Калий -2,92 Олово -0,14
Магний -1,55 Свинец -0,13
Алюминий -1,32 Водород 0
Цинк -0,76 Медь +0,34
Хром -0,51 Серебро +0,81
Железо -0,44 Ртуть +0,86
Никель -0,25 Золото +1,50
Каждые
два металла образуют гальваническую
пару. При этом электродвижущая сила
будет тем больше, чем дальше друг
от друга они стоят в
Взаимодействие металлов с газами. Количество отливки во многом зависит от взаимодействия металлов (особенно их жидких расплавов) с газами. Это взаимодействие представляет собой комплекс сложных физико-химических процессов, направленных в строну равновесия.
В реальных условиях полное равновесие между газообразной и жидкой фазами достигается крайне редко. Поэтому термодинамические расчеты, относящиеся к состоянию равновесия, как правило, показывают лишь направление взаимодействия.
Возможны три случая взаимодействия газов с расплавами.
1.
Полная взаимная интенсивность.
2.
Газ практически нерастворим
в металле. Образующиеся
3.
Газы образуют с металлом
[Г]ме = к√рr exp [ - ΔQ/ (RT)].
где, k - постоянный коэффициент, R - газовая постоянная, ΔQ - теплота растворения 1 модуля газа в расплаве. Значение ΔQ может быть положительным и отрицательным.
При ΔQ > 0 процесс растворения газа сопряжен с поглощением теплоты и является эндоремическим. В этом случае повышение температуры вызывает увеличение содержания газа в металле.
При ΔQ < 0 растворение газа сопровождается выделением теплоты, т.е. является экзотермическим процессом, и повышение температуры вызывает снижение содержания газов в растворе.
При эндотермическом процессе, когда растворимость газа снижается по мере охлаждения расплавов, в ходе кристаллизации в отливке могут образовываться газовые пузыри. Это происходит из-за избыточного для низких температур количества газа в расплаве. Эти пузыри являются причиной образования газовой пористости.
В
таблице 3 приведены данные о взаимодействии
жидких металлов с различными газами (водородом,
кислородом, азотом). В таблицу также включены
сведения об углероде, поскольку надо
учитывать возможность растворения монооксида
углерода. Знак "+" указывает на существенную
растворимость, знак "-" указывает
на незначительную растворимость.
Таблица
3 - Взаимодействие жидких металлов с газами
и углеродом. Газ Sn Pb Zn Mg Al Cu Mn Ni
Водород - - - + + + + + + +
Кислород - - - - - + + + + +
Азот - - - - - - + + + +
Углерод - - - - - - + + + +
Взаимодействие с водородом. Водород составляет основную долю растворенных газов. Он попадает в жидкие металлы вследствие разложения воды или углеводородов:
Ме + Н2О >МеО + 2 [Н];
СаНm > nC + m [H].
Растворение водорода в металлах ряда Mq - Fe (см. таблицу 16) сопровождается поглощением теплоты. Снижение температуры вызывает уменьшение содержания газа в растворе. В этих металлах возможно образование газовой пористости, если расплав содержит большое количество водорода. Растворение водорода в титане является экзотермическим процессом, растворимость расет с понижением температуры и образование водородной пористости невозможно.
Взаимодействие с кислородом. Все жидкие металлы взаимодействуют с кислородом.
Легкоплавкие металлы - от олова до алюминия (см. таблицу 16) - практически не растворяют кислород. Взаимодействие этих металлов с кислородом сводится к образованию оксидных плен на поверхности металла.
Остальные металлы способны растворять кислород в определенных количествах, после чего начинается образование оксидов.
Взаимодействие с азотом. Растворение азота в марганце, никеле и железе является эндотермическим процессом, вследствие чего эти металлы подвержены образованию газовой пористости, вызванной выделением азота из расплавов.
В титане азот растворяется с выделением теплоты, что исключает образование газовой пористости.
Растворение азота в жидких сплавах металлов в общем случае пропорционально содержанию компонентов. Исключение составляют сплавы железа и никеля с добавками алюминия и титана. В этих сплавах образуются твердые нитриды титана и алюминия в виде включений.
Для металлов от олова до меди (см. таблицу 16) азот практически является инертным газом.
Взаимодействие с водой. Большая часть металлов в жидком состоянии располагает воду. Результаты взаимодействия расплава с водой зависят от характера его взаимодействия с водородом и кислородом.
Если расплав не растворяет ни водород, ни кислород, то в результате контакта с влагой расплав покроется пленой оксидов, а водород уйдет в атмосферу. Так ведут себя олово , цинк, свинец и все сплавы на их основе.
Если же расплав не растворяет кислород, но растворяет водород происходит окисление поверхности расплава и насыщение его растворенным водородом.
Если расплав способен растворять и кислород, и водород, то именно это и будет происходить. Конечное равновесие в системе определяется парциальным давлением паров воды и концентрациями кислорода и водорода в расплаве.
Взаимодействие металлов с оксидом углерода. Взаимодействие металлов с оксидом углерода определяется возможностью прохождения реакции:
Ме + СО >МеО + С;
Ме + СО > [Ме + О] + С;
Ме + СО > [Ме + С + О].
Свинец, олово и медь с оксидом углерода практически не взаимодействуют, для этих металлов его модно рассматривать как нейтральный газ.
Для цинка, магния, алюминия СО является окислительным газом, взаимодействие с ним приводит к образованию нерастворимых оксидов на поверхности расплава.
Для остальных металлов, представленных в таблице 16. понижение температуры равновесие между содержанием кислорода и углерода в расплаве сдвигается в влево, т.е. в строну образований СО. Следовательно, расплавы, содержащие растворенные углерод и кислород, при охлаждении и кристаллизации могут поражаться газовой пористостью, образованной оксидом углерода. Подобное, например, происходит в литейных углеродистых сталях в случае недостаточного раскисления.
Взаимодействие
металлических расплавов с
Наиболее часто применяют шамот (60-75 % SiО2 , остальное – Al2O3), динас (более 95 % SiO2, остальные - примеси), магнезит (80 % MqO), хромомагнезит (45-50 % МqО, 30-35 % Cr 2O3, остальное – SiO2), циркон (65 % ZrO2,, 35 % SiO2), высокоглиноземистые огнеупоры (более 50 % Al2O3, остальное - SiO2). Самым дешевым и доступным огнеупорным материалом является шамот.
Основной характеристикой этих материалов является огнеупорность - температура, 0С, при которой материал способен выдержать напряжение сжатие 0,2 МПа (таблице 4). (Огнеупорность формовочных смесей оценивается температурой, при которой происходит деформация специальных образцов - конусов.
Таблица 4 - Огнеупорность материалов. Материал Огнеупорность, 0С
Циркон 1700
Динас 1600
Магнезит 1550
Хромомагнезит 1500
Высокоглиноземистые материалы 1500
Шамот 1300
Химическая стойкость огнеупоров определяется возможностью происхождения реакции между жидким металлом и огнеупорным оксидом
Ме + RO > MeO + [R]С Me;
Ме + RO > [Me + O + R].
где, R - металл, входящий в состав оксида.
В результате этих реакций разрушается футеровка, расплав загрязняется оксидами и примесью R или кислородом и примесью R.
Кроме того, возможно взаимодействие оксидов огнеупора и оксидов металла, выражающееся во взаимном растворении. Оценить такое взаимодействие можно по виду диаграммы состояния МеО - RO. Если в системе МеО – RO имеются эвтектики с температурой плавления ниже температуры расплава, то при плавке на воздухе обязательно будет происходить активное разъедание футеровки.
Легкоплавкие металлы - олово, свинец, цинк - имеют столь низкие температуры огнеупорных материалов. Однако при плавке свинца и его сплавов в шамоте перегревы до 750 0С приводит к оплавлению футеровки вследствие того, что в системе PbO - SiO имеется эвтектика с температурой плавления 715 0С.
Поскольку магний при температурах расплава около 850 oС активно восстанавливает кремний из шамота, магниевые сплавы плавят в печах с магнезитовой футеровкой или в стальных тиглях.