Химия древесины

Автор работы: Пользователь скрыл имя, 02 Апреля 2012 в 13:02, контрольная работа

Описание

Отличительной особенностью химического состава коры является высокое содержание экстрактивных веществ и наличие неких специфичных компонентов, не удаляемых нейтральными растворителями. Последовательным экстрагированием растворителями с увеличивающейся полярностью из коры разных видов извлекают от 15 до 55% ее массы. Следующая обработка 1%-м раствором NaOH дополнительно растворяет от 20 до 50% массы. В результате таких поочередных обработок древесная кора теряет от 10 до 75% собственной массы.

Работа состоит из  1 файл

Химический состав коры деревьев резко отличается от химического состава древесины.docx

— 18.32 Кб (Скачать документ)

Химический состав коры деревьев резко  отличается от химического состава  древесины (ксилемы).

Отличительной особенностью химического  состава коры является высокое содержание экстрактивных веществ и наличие  неких специфичных компонентов, не удаляемых нейтральными растворителями. Последовательным экстрагированием растворителями с увеличивающейся полярностью  из коры разных видов извлекают от 15 до 55% ее массы. Следующая обработка 1%-м раствором NaOH дополнительно растворяет от 20 до 50% массы. В результате таких поочередных обработок древесная кора теряет от 10 до 75% собственной массы. При всем этом из коры удаляются не только некоторая часть гемицеллюлоз, но и такие специфические составляющие, как суберин и полифенольные кислоты коры, которые нельзя относить к экстрактивным веществам. Особенности строения и химического состава коры вызывают определенные трудности при ее анализе и требуют модифицирования методик, разработанных для анализа древесины, а именно, введения дополнительных предварительных обработок водным и спиртовым растворами и фоксида натрия. В противном случае наличие суберина и полифенольных кислот может привести к значительному завышению результатов определения холоцеллюлозы и лигнина. Кора если сравнивать с древесиной содержит больше минеральных веществ (1,5...5,0%). Иногда это обусловлено отложением в коре кристаллов карбонатов. Зольность коры в значительной степени зависит от условий произрастания дерева (состава и влажности почвы и др.).

Массовая доля холоцеллюлозы в коре приблизительно в 2 раза меньше, чем в древесине, при этом в лубе ее содержание выше, чем в корке. Целлюлоза в коре, как и в древесине, является главным полисахаридом, но в отличие от древесины ее нельзя назвать преобладающим компонентом коры. В литературе для массовой доли целлюлозы в непроэкстрагированных образцах коры приводятся значения от 10 до 30%.

Как и в древесине, главные гемицеллюлозы  коры хвойных пород — глюкоманнаны и ксиланы, а лиственных — ксиланы. В стенках пробковых клеток найден глюкан — каллоза. Каллоза появляется и во флоэме в качестве вещества, закупоривающего ситовидные пластинки. Обращает на себя внимание довольно большая массовая доля уроновых кислот в коре, особенно в тканях луба, что связывают с высоким содержанием пектиновых веществ. С этим согласуется значительно большее количество водорастворимых полисахаридов в коре по сравнению с древесиной Состав пектиновых веществ коры существенно не отличается от состава этих веществ в древесине. Отмечают только более высокое содержание арабинозы.

Лигнин в тканях коры распределен  менее равномерно, чем в древесине. Внешний слой коры наиболее лигнифицирован, чем внутренний. Наиболее лигнифицированы стенки каменистых клеток. Лигнин также содержится в стенках волокон и некоторых типов паренхимных клеток флоэмы и корки. Распределение лигнина среди разных видов клеток в коре имеет сильные видовые различия. Лигнин коры наиболее конденсирован, чем в древесине этой же древесной породы, что в какой то степени подтверждается данными по делигнификации коры. Кора труднее делигнифицируется, чем древесина.

Суберин. Характерным компонентом наружного слоя коры является суберин продукт сополиконденсации, главным образом, высших (С16...С24) насыщенных и одноненасыщенных алифатических а, дикарбоновых кислот с гидроксикислотами (последние могут быть дополнительно гидроксилированы). Участие в поликонденсации мономеров с 3-мя и более многофункциональными группами (карбоксильными, гидроксильными) приводит к образованию сложного полиэфира с сетчатой структурой. Некоторые исследователи допускают существование и простых эфирных связей. В результате суберин невозможно выделить из коры в неизмененном виде, так как он не экстрагируется нейтральными растворителями, а сложноэфирные связи делают его весьма лабильным компонентом. Из коры суберин выделяют в виде субериновых мономеров после омыления водным или спиртовым растворами щелочи и разложения образовавшегося суберинового мыла минеральной кислотой.

Суберин содержится в перидерме, в том числе и в раневой. Он локализуется в пробковых клетках, являясь составной частью клеточной стенки. Пробковые ткани пробкового дуба содержат 42...46% суберина, бразильского тропического дерева паосанта (Kielmeyera coriacea ) — 45%, а пробковые клетки березы бородавчатой — 45% суберина. Массовая доля суберина во внешнем слое коры изредко превышает 2...3%, но есть древесные породы, отличающиеся высоким содержанием суберина. В вышеперечисленных древесных породах субериновые мономеры составляют 20...40% массы внешней части коры. Характерной особенностью пробковой ткани березы — бересты является накопление наряду с суберином тритерпенового спирта — бетулина. Состав субериновых мономеров весьма разнообразен. Кроме упомянутых выше дикарбоновых и гидроксикислот, в состав субериновых мономеров входят одноосновные жирные кислоты, одноатомные высшие жирные спирты (до 20% массы суберина), фенольные кислоты, дилигнолы (димеры фенилпропановых единиц) и другие.

Полифенольные кислоты. Как уже  отмечалось, обработкой предварительно проэкстрагированной нейтральными растворителями коры 1%-м водным раствором NaOH извлекается до 15...50% материала, представляющего собой группу фенольных веществ, обладающих кислыми свойствами. Это дало повод назвать их полифенольными кислотами. Однако в них обнаружены не карбоксильные, а карбонильные группы. После осаждения из щелочного раствора лодкислением минеральными кислотами полифенольные кислоты становятся частично растворимыми в воде и полярных органических растворителях. По всей вероятности, «полифенольные кислоты» — полимерные вещества флавоноидного типа, родственные конденсированным танинам и способные поэтому в щелочной среде претерпевать перегруппировку с появлением карбонильных групп.

В заключение следует подчеркнуть, что существенные различия в строении и химическом составе коры и древесины  обусловливают необходимость раздельной переработки этих составных частей биомассы дерева как с технологической, так и с экономической точек зрения. Однако существующие методы удаления коры (окорки) сопряжены с потерями древесины. В отходах окорки наряду с корой содержится значительное количество древесины, что осложняет химическую переработку такого сырья. Разнообразие представленных в коре химических соединений делает привлекательной идею извлечения наиболее ценных компонентов. Развитие данного направления утилизации коры сдерживается относительно низким содержанием извлекаемых компонентов. Вследствие этого основные направления переработки коры все еще ограничены ее утилизацией как органического материала в качестве топлива, в сельском хозяйстве и т.п. Редкие примеры использования коры отдельных древесных пород для выделения дубильных веществ, производства пробки, получения дегтя (из бересты березы) и выделения из коры растущих деревьев пихты пихтового бальзама не улучшают, к сожалению, общую картину неэффективного использования содержащихся в коре ценных органических соединений.


Информация о работе Химия древесины