Химия и физика полимеров

Автор работы: Пользователь скрыл имя, 22 Декабря 2011 в 17:56, лекция

Описание

Пластические массы - твердые в процессе эксплуатации полимерные материалы, в процессе переработки они находятся в высокоэластическом или вязкотекучем состоянии.
Эластомеры - (каучуки, резины) полимеры которые в широком интервале температур соответствующих условиям эксплуатации, обладают высокоэластическими свойствами, то есть под воздействием небольших внешних сил они подвергаются значительным необратимым или обратимым деформациям.

Работа состоит из  1 файл

Химия и физика полимеров.doc

— 79.00 Кб (Скачать документ)

смещения узлов  флуктационной сетки ;

II – величина деформации достигает сотен %. Если образец освободить,

то он не сократится самопроизвольно, но при нагревании выше Тс ,

сократится до длины, близкой к исходной.

III – происходит  разрушение образца. 

11. Температура хрупкости  и эксплуатационные свойства полимеров

Хрупкость - это способность  стеклообразных полимеров разрушаться  при малых деформациях, меньших, чем деформация, соответствующая  пределу вынужденной эластичности.

Хрупкость полимерных стекол принято оценивать по величине температуры хрупкости Тхр. Чем выше Тхр, тем более хрупким считается полимер.

Тхр - это температура, при которой полимер разрушается  в момент достижения предела вынужденной  эластичности. Чтобы определить Тхр, строят зависимость предела вынужденной  эластичности σт от температуры. σт увеличивается с уменьшением температуры.

Когда температура  становится ниже Тхр, вынужденная эластичность не развивается , и тогда определяют прочность полимера σр, который стал хрупким.

Зная Тхр и Тс - можно определить интервал температур, в котором полимер ведет себя как упругий, нехрупкий материал. Тхр так же как и Тс зависят от молекулярной массы. При малой молекулярной массе , значения Тс и Тхр совпадают (олигомер). Когда молекулы становятся достаточно длинными и, следовательно, появляется гибкость, Тс растет быстрее чем Тхр и возникает температурный интервал вынужденной эластичности (Тс - Тхр). При дальнейшем росте молекулярной массы Тхр понижается, что приводит к увеличению интервала вынужденной эластичности для высокомолекулярных полимеров.

Эластомеры для  расширенного температурного интервала высокоэластичности вулканизируют. Пластмассы для снижения Тхр - модифицируют. Тхр - определяет морозостойкость полимеров.

12. Особенности механических  свойств полимеров 

Механические свойства определяют изменение структуры, размеров и формы полимеров под действием механических сил. В зависимости от величины действующей силы изделие может либо разрушиться, либо потерять форму, поэтому механические свойства делятся на деформационные и прочностные.

Деформационные - свойства характеризуют способность полимера деформироваться под действием механических нагрузок, а прочностные - способность сопротивляться разрушению. Механические свойства полимеров значительно отличаются от механических свойств других материалов. Отличие в том, что в полимерах существует большая зависимость не только от самого полимера (то есть его строения и состава), но и от характера внешней силы. Именно режим деформирования и характер механической нагрузки часто определяют работоспособность полимерного изделия, различают статические и динамические режимы нагружения.

К статическим относятся  режимы при постоянной нагрузке или  при малой частоте нагружения.

Динамические режимы включают циклические и ударные  нагрузки.

13. Особенности прочностных  свойств полимеров 

Прочностью называется способность сопротивляться разрушению под действием механических напряжений (выражается в МПа). Разрушением - называется нарушение целостности (сплошности) материала, то есть его разрыв с образованием новых поверхностей. Под теоретической прочностью понимают прочность тела с идеальной структурой (без дефектов) при одноосной статической деформации растяжения и сдвига. Под технической прочностью понимают прочность реальных полимеров. Она ниже теоретической из-за наличия теплового движения и дефектов. Из-за дефектов разрывы определяются не средним напряжением, а местным напряжением на микродефектах, то есть в областях перенапряжения. При значительных нагрузках полимер может разрушаться даже мгновенно. Если же сила невелика, то время до разрушения увеличивается, поэтому различают кратковременную и длительную прочность

Прочность зависит  от скорости приложения нагрузки. Для  идеального полимера, в котором все  цепи одинаково напряжены и рвутся почти одновременно вводится понятие  предельно допустимой прочности. Снижение показателя прочности по сравнению с теоретической и предельно допустимой объясняется следующими причинами: 1) неравномерностью нагружения цепей ; 2) существование коротких и длинных цепей и их различная ориентация ; 3) неравномерность структуры на молекулярном и надмолекулярном уровнях, наличие микротрещин, аномальных звеньев.

Под действием механической нагрузки полимер разрушается в  несколько стадий: 1) растяжение межатомных связей; 2) разрыв возбужденных связей; 3) образование свободных радикалов; 4) цепные реакции в зоне разорвавшихся связей, которые инициировали свободные радикалы. При этом могут выделяться летучие продукты, которые приводят к образованию микротрещин; 5) прорастание микротрещин их слияние в одну магистральную трещину, которая приводит к разрушению.

14. Особенности деформационных  свойств полимеров 

Деформацией называется изменение размеров, объема и формы  под действием температуры, внешнего механического воздействия или  внутренних сил. Деформационные свойства обычно оценивают по кривым σ –ε. На всех кривых наблюдается начальный прямолинейный участок , на котором выполняется закон Гука σ = Е *ε. Напряжение, которое соответствует концу этого участка называется пределом упругости σупр . При дальнейшем нагружении закон Гука не выполняется и общая деформация:

εобщ = εупр + εВЭл + εВТ 

Относительный вклад  каждого вида деформации определяется рядом факторов: 1) условия деформирования (температура и скорость приложения нагрузки); 2) физического состояния  полимера; 3) фазовое состояние полимера; 4) химического строения полимера;

Ход кривых σ –ε в  значительной степени зависит от релаксационного характера деформации. Он проявляется: 1) в отставании деформации от напряжения при приложении нагрузки; 2) наличия остаточной деформации после снятия нагрузки.

Величина остаточной деформации может служить критерием  при делении полимеров на пластичные и эластичные. Пластичные полимеры или пластмассы сохраняют заданную форму и деформацию после удаления деформирующей силы и их остаточная деформация равна первоначальной εост = ε1, а эластичные полимеры то есть эластомеры восстанавливают размеры и форму εост > 0.  

15. Фазовые, агрегатные  и физические свойства полимеров,  их характеристика 

Из-за большой длины  макромолекул и большого суммарного межмолекулярного взаимодействия перевести полимер в газообразное состояние невозможно. При приложении большого количества тепловой энергии полимер деструктурируется. Для полимера известно два фазовых состояния: кристаллическое и аморфное. В аморфном состоянии макромолекулы расположены беспорядочно, в кристаллическом - существует определенная надмолекулярная структура.

Для полимеров введено  понятие о трех фазовых состояниях:

Твердые аморфные полимеры называются стеклообразными (СОС), Жидкое агрегатное состояние называется вязкотекучим (ВТС). Между СОС и ВТС находится высокоэластическое состояние (ВЭС), для которого характерны обратимые деформации.

Полимеры, находящиеся  в различных состояниях, обладают различными свойствами. Под действием  внешних факторов при изменении температуры полимеры переходят из одного состояния в другое.

16. Релаксационные  процессы в полимерах. Принцип  температурно-временной суперпозиции 

Релаксация - отдых, ослабление или переход из неравновесного состояния в равновесное. Из-за большой  длины и сильного межмолекулярного взаимодействия процесс релаксации протекает во времени. Процессы релаксации оказывают значительное влияние на переработку полимера. Механическая релаксация делится на два вида: релаксация напряжения и релаксация деформации. Если полимер быстро растянуть, то в нем возникнет напряжение, которое можно измерить. С течением времени это напряжение падает. Это связано с изменением конформации макромолекул: клубок - струна - клубок. Для линейного полимера, в котором макромолекулы не связаны между собой, напряжение падает до нуля, а для сшитого - останется постоянным.

Чем выше температура, тем быстрее напряжение в линейном полимере упадет до нуля. Остаточное напряжение в сшитом полимере тем больше, чем  больше сшивок. Релаксация деформации приводит к ползучести или крипу. Это релаксационный процесс нарастания деформации под действием постоянной нагрузки. Ползучесть увеличивает размеры изделий и часто препятствует их эксплуатации.

Для сшитого полимера деформации после растяжения и снятия нагрузки снижается до нуля благодаря сшивкам. Для линейного полимера остается некоторая остаточная деформация εост, которая возникает из-за необратимого перемещения части несвязанных между собой макромолекул. Остаточная деформация для линейных полимеров очень велика, однако и для сшитых полимеров велика для случайно несшитых макромолекул.

Увеличение частоты (то есть времени действия силы) и  уменьшение температуры действуют  на полимер одинаково. Чем быстрее  действует сила, тем большее сопротивление  со стороны полимера, тем полимер жестче в момент действия силы. Это связано с тем, что громоздкие макромолекулы и надмолекулярные структуры при быстром деформировании не успевают перестраиваться в направлении действия силы. Такое же снижение подвижности структурных единиц происходит при понижении температуры. Такая эквивалентность действия температуры и времени действия силы называется принципом температурно-временной суперпозиции (суперпозиция наложения).  

17. Растворы и коллоидные  системы полимеров, образование, особенности, виды, свойства

Длительное время  растворы высокомолекулярных соединений относили к лиофильным коллоидам. Считалось, что дисперсная фаза таких растворов  состоит из мицелл-агрегатов макромолекул. Еще в 30-е годы ХХ в. Немецкий химик  Г. Штаудингер одним из первых указывал, что полимеры в растворах диспергированы до макромолекул.

Макромолекулы полимеров  представляют собой анизометричные цепи, состоящие из большого числа  малых по размерам повторяющихся  группировок (мономерных звеньев), соединенных друг с другом химическими связями. Молекулы органических полимеров отличаются своей гибкостью – способностью изгибаться и изменять свою форму в результате внутримолекулярного теплового движения. Изменение формы молекул отвечает изменению их конформаций (пространственного расположения атомных групп). Чем длиннее полимерные цепи и выше их гибкость, тем большее число конформаций они могут принять в растворе.

Вид конформации  макромолекул во многом определяет поведение  растворов полимеров. В зависимости  от природы полимера и растворителя макромолекула могут принимать самые различные конформации, от конформации стержня (предельно вытянутых цепей) до конформации глобулы (плотных сферических частиц). Конформации стержня характерны для растворов жесткоцепных полимеров и полиэлектролитов в хороших (имеющих высокое термодинамическое сродство к полимеру) растворителях. Гибкоцепные макромолекулы в разбавленных растворах имеют форму клубков. В хороших растворителях полимерные клубки развернутые и рыхлые, в плохих растворителях (при низком термодинамическом сродстве между полимером и растворителем) макромолекула принимают форму плотных компактных клубков (глобул).

Растворы, в которых  полимерные молекулы находятся в  виде стержней, являются истинными  и по своим характеристикам ничем не отличаются от растворов низкомолекулярных соединений. При сворачивании макромолекул в клубки растворы переходят в коллоидное состояние и проявляют практические все свойства, присущие высокодисперсным системам (золям).

Для растворов высокомолекулярных соединений, так же как и для коллоидных, характерны существенно меньшие величины скоростей диффузии, осмотического давления, изменения температур замерзания и кипения по сравнению с растворами низкомолекулярных соединений. Напротив, интенсивность светорассеяния растворов ВМС и коллоидных на несколько порядков больше по сравнению с растворами низкомолекулярных веществ.

Вместе с тем  растворы ВМС имеют специфические, присущие только им свойства, наиболее важными из которых являются большая  вязкость и наличие стадии набухания растворяемого вещества, предшествующего растворению.

Концентрацию растворов  ВМС обычно выражают в массовых, объемных долях или процентах  растворенного вещества, а также  числом граммов полимера в 100 мл раствора.

18. Влияние структуры полимера на его прочность

1) Молекулярная масса.  Прочность растет с увеличением  молекулярной массы до определенного  предела, соответствующего полному  формированию надмолекулярной структуры,  после чего меняется незначительно.  В области М = 50 -100 тыс. прочность мало зависит от М.  

2) Образование надмолекулярной  структуры (НМС). Увеличивает прочность,  причем при переходе с феролитной  структуры к фибриллярной прочность  повышается в 10 раз 

3) Чем меньше размеры  НМС, тем выше прочность 

4) Кристаллические полимеры прочнее аморфных

5) Расширение ММР  всегда приводит к уменьшению  прочности 

6) Химические сшивки  между линейными макромолекулами  повышают прочность, особенно  для эластомеров, причем зависимость  прочности от степени сшивания  описывается кривой с максимумом

7) Более гибкие  полимеры прочнее, чем жесткие 

8) Наличие полярных  групп увеличивает прочность 

9) Введение наполнителей  влияет на прочность неоднозначно: активные наполнители увеличивают  прочность, неактивные позволяют  снизить стойкость материала (например, введение мела, технического углерода)

Информация о работе Химия и физика полимеров