Автор работы: Пользователь скрыл имя, 20 Мая 2013 в 21:15, курсовая работа
Химическим реактором называют аппарат, в котором осуществляются химико-технологические процессы, сочетающие хими¬ческие реакции с тепло- и массопереносом. От правильности вы¬бора типа реактора и от его совершенства во многих случаях зависит эффективность всего процесса. К промышленным реакто¬рам предъявляют различные требования, основными из которых являются:
1) максимальная производительность и интенсивность рабо¬ты;
2) высокий выход продукта;
3) малые энергетические затраты при эксплуатации, наилуч¬шее использование теплоты реакции;
Введение………………………………………………………………………...
1. Характеристика исходного сырья …………………………………………
2. Характеристика целевого продукта ……………………………………….
3. Реакторы, применяемые в процессе прямой гидратации этилена, шахтного типа…………………………………………………………………..
4. Физико-химическое обоснование основных процессов производства этилового спирта ……………………………………………………………..
4.1. Сернокислая гидратация этилена………………………………….
4.2. Парофазная гидратация этилена…………………………………
4.3. Технологическая схема синтеза производства этилового спирта прямой гидратацией этилена…………………………………………...
5. Применение этанола……………………………………………………….
6. Практическое задание курсового проекта…………………………………
Список использованных источников………………………………………..
При прочих равных условиях скорость абсорбции этилена увеличивается с ростом температуры и парциального давления, однако, при температуре выше 900С начинается интенсивное образование полимеров. Увеличение парциального давления этилена выше 2 МПа становится тоже малоэффективным.
Фактором, ускоряющим процесс абсорбции, является наличие в исходной серной кислоте этилсульфатов, которые, обладая свойствами эмульгаторов, увеличивают поверхность контакта вследствие пенообразования, и тем самым способствуют более быстрому и полному растворению этилена.
В настоящее время в промышленных установках приняты следующие условия абсорбции этилена: концентрация серной кислоты 97-98%, температура 80-850С, парциальное давление этилена на входе в абсорбер 1-1,5МПа, содержание пропилена и высших олефинов в исходной этилен-этановой фракции <0,1%. В ходе второй стадии идет гидролиз этил - и диэтилсульфата по уравнениям:
C2H5OSO3H + H2O à C2H5OH + H2SO4,
(C2H5O)2SO2 + 2H2O à 2 C2H5OH + H2SO4
Эта стадия также обратима, для обеспечения ее протекания необходим избыток воды, и, по возможности, быстрое удаление спирта из зоны реакции, т.к. кроме основной реакции идет образование диэтилового эфира:
(C2H5O)2SO2 + C2H5OH à C2H5OC2H5 + C2H5OSO3H,
(C2H5O)2SO2 + H2O à C2H5OC2H5 + H2SO4.
Главным преимуществом сернокислой гидратации по сравнению с прямой гидратацией является возможность применения неконцентрированного этилена, т.к. его концентрирование связано с большими капитальными и эксплуатационными затратами.
Однако, метод сернокислой гидратации имеет ряд недостатков. Среди них можно отметить следующие:
4.2. Парофазная гидратация этилена
Наиболее разработанным применительно к имеющимся промышленным установкам в настоящее время является процесс газофазной гидратации:
CH2=CH2(г.) + H2O(г.) = C2H5OH(г.) + 41868Дж/моль.
Механизм:
CH2=CH2 + Н+ « СН3-СН2+,
СН3-СН2+ + Н2О « СН3-СН2-ОН2+,
СН3-СН2-ОН2+ « СН3-СН2-ОН + Н+.
Но наряду с основной реакцией идут параллельные и последовательные побочные реакции:
C2H4 + H2O = C2H5OC2H5,
n(C2H4) = (-CH2-CH2-)n.
Таким образом, процесс сложный, обратимый, несмещенный (см. таблицу 2), экзотермический, протекает с уменьшением объема.
Таблица 2
Равновесный выход этанола
Отношение количеств веществ: МH2O/MC2H4 |
Равновесный выход за один проход при давлении 8МПа при температуре: | |
2800С |
2900С | |
0,6 |
15,4 |
8,53 |
0,8 |
18,3 |
10,15 |
Следует обратить внимание на два физико-химических фактора, которые определяют основные технологические параметры процесса. Прежде всего, это активность катализатора, которая имеет решающее значение для определения температуры процесса. Катализаторами прямой гидратации могут служить фосфорная кислота и ее соли. Чаще всего используется фосфорная кислота концентрацией 85-87% на таких носителях, как алюмосиликаты, силикагели, пемза и др.; значительная часть кислоты (до 35%) находится в свободном состоянии. Активность этого катализатора является невысокой. Только при температуре 280-3000С ее можно считать более или менее приемлемой для промышленных условий. При более высокой температуре в значительной мере развиваются побочные процессы: полимеризация этилена, усиленное образование эфира и т.д.
Другим отправным фактором в газофазном процессе выступает весьма низкая по сравнению с этиленом летучесть воды, которая имеет решающее значение для определения давления процесса. Последнее, при прочих равных условиях, зависит от парциального давления паров воды, т.е. тоже от температуры.
Таким образом, температура становится важнейшим параметром, определяющим не только скорость, но и общее давление процесса. Так, в соответствии со стехиометрическим уравнением реакции, для эквимолярной смеси этилена и паров воды, парциальное давление последних должно составлять примерно половину от общего давления. Однако с целью предотвращения конденсации водяного пара в самом реакторе, что приводит к разбавлению фосфорной кислоты и парализует действие катализатора, парциальное давление паров воды, а, значит, и общее давление, должно быть несколько ниже. И действительно, в промышленности применяют общее давление около 8,0 МПа.
Имеются и другие пути, предотвращающие появление водяного конденсата. Во-первых, это повышение температуры. Однако, в силу экзотермичности процесса, этот путь принципиально непригоден, т.к. приводит к снижению конверсии этилена и интенсификации побочных процессов. Во-вторых, это снижение парциального давления паров водяного пара за счет повышения парциального давления этилена. Однако, этот путь тоже непригоден. Он также приводит к снижению выхода этанола, т.к. оптимальным соотношением между реагирующими компонентами является эквимолярное. Мольное соотношение, используемое в промышленности, этилен – пары воды равно 1 : 0,6-0,8.
Выбранное соотношение компонентов диктует выбор общего давления:
Робщ = РС2Н4 + РН2О + Ринерт.
Известно, что давление паров воды над 85%-ной фосфорной кислотой при температуре 2800С составляет 2,7 МПа. Принимая во внимание мольное соотношение между компонентами, видно, что давление паров этилена составляет около 4,7МПа. В таком случае концентрация инертных примесей должна быть порядка 15% (Ринерт = РС2Н4*0,15/0,85). Давление больше 8МПа нежелательно т.к. происходит конденсация водяного пара.
В настоящее время процесс гидратации этилена реализуется в промышленности при следующих условиях: t = 280-3000С; Р = 8,0 МПа; мольное соотношение пары воды: этилен = 0,6 : 0,8; катализатор – фосфорная кислота и фосфаты на алюмосиликате или силикагеле при содержании Н3РО4 до 35% в свободном состоянии, объемная скорость циркулирующего газа 1800-2000ч-1, что соответствует продолжительности контакта 18-20с и производительности 180-200кг этанола с 1м3 катализатора в 1 ч.
При этих условиях этилен расходуется примерно следующим образом: 95% - на образование этанола; 2-3% - этилового эфира; 1-2% - ацетальдегида; 1-2% - полимеров и др. продуктов.
В приведенных условиях гидратации максимальный выход (равновесный) за один проход может составить только 10%; практически он достигает лишь 5%, что приводит к необходимости многократной циркуляции реакционной газовой смеси через слой катализатора.
Увеличение объемной скорости является методом интенсификации рециркуляционного процесса, поэтому процесс синтеза этанола ведут с большими объемными скоростями.
Малая конверсия этилена и низкая производительность катализатора обусловили необходимость работы не с разбавленным, а с концентрированным 98-99% этиленом. Даже при таком концентрированном этилене, т.е. при содержании в нем до 2% инертных примесей, они накапливаются в рециркулирующем газе, что приводит к снижению содержания этилена. Нижний предел концентрации этилена принят сегодня 85%, что соответствует содержанию инертных примесей до 15%. Поэтому необходим отвод последних с частью рециркулирующего газа (отдувка), которая составляет 13% от подачи свежего 98%-ного этилена.
Из рециркулирующей реакционной газовой смеси необходим непрерывный отвод получаемого этанола. Практически удаление этанола производится обычным методом конденсации, при этом вода как менее летучий компонент конденсируется с большей полнотой. Это приводит к огромным затратам тепла (учитывая крупнотоннажность производства этанола) на получение водяного пара, из которого только 5% расходуется на конденсацию этанола, а остальные 95% - на конденсацию воды. Поэтому возникает острая необходимость в утилизации тепла непрореагировавшего водяного пара путем эффективного теплообмена между потоками выходящего из реактора и входящего в него газовых смесей, а также путем генерации вторичного водяного пара в котлах-утилизаторах. Относительно низкий температурный потенциал тепла (250-3000С) приводит к громоздкой системе теплообмена и теплоиспользующих аппаратов.
Однако интенсивная циркуляция реакционной газовой смеси, кратность которой (при выходе этанола около5%) достигает 20, и сравнительно невысокая теплота реакции позволяет весьма просто реализовать процесс в адиабатическом реакторе колонного типа. Выделяющаяся теплота реакции повышает температуру реагирующего газового потока лишь на 15-200С, что допустимо.
Несмотря на весьма малую летучесть фосфорной кислоты, унос ее в виде паров при такой значительной рециркуляции реакционной газовой смеси и высокой температуре достигает 0,4-0,5кг/ч с 1м3 катализатора, что может вызвать коррозию аппаратуры и ограничивает длительность нормальной работы катализатора до 500-600 часов. В связи с этим была разработана технология непрерывной подачи свободной фосфорной кислоты в реакционную газовую смесь на входе в реактор, нейтрализации ее щелочью на выходе из реактора и регенерация из полученных при нейтрализации солей. Это позволило увеличить длительность работы катализатора до 1500 часов, заметно сократить расход фосфорной кислоты и значительно уменьшить коррозию оборудования. Такой процесс можно проводить в стальной аппаратуре. [3., стр.180]
Из приведенной физико-химической характеристики процесса можно вывести основные положения, которые были приняты при разработке существующей технологической схемы.
Технологические схемы синтеза этанола различаются способами получения водяного пара и системами утилизации тепла. В наиболее совершенных схемах водяной пар для синтеза получают путем рецикла воды после отделения этанола и использованием водяного конденсата.
Свежий и оборотный этилен сжимают в компрессорах 1,2 до 8МПа, смешиваются с водяным паром, подогреваются в теплообменнике 4 теплом отходящей от реактора смеси и перегреваются в трубчатой печи 3 до 275 °С, после чего подаются в реактор – гидрататор 5. Перед входом в реактор в поток вбрызгивается фосфорная кислота для подпитки катализатора, что продлевает срок его службы.
Реактор представляет собой полую колонну высотой Юм и диаметром 1,5м, работающую в режиме идеального вытеснения. Для исключения влияния коррозии от фосфорной кислоты изнутри он выложен листами красной меди.
Реакционные газы содержат пары унесенной фосфорной кислоты, которая нейтрализуется гидроксидом натрия, а образующиеся соли выделяются в солеотделителе 6. Унос фосфорной кислоты составляет 0,4 - 0,5 т/час с 1 мЗ катализатора.
1,2 – компрессоры; 3 – трубчатая печь; 4 – теплообменник; 5 – реактор; 6 – солеотделитель; 7 – холодильник; 8, 10 – сепараторы;
9 – абсорбер; 11 – колонна отгонки легкой фракции; 12 – колонна отгонки этанола; 13 – установка ионообменной очистки оборотной воды;
14 – насос; 15 – дроссельный вентиль; 16 – конденсаторы.
Теплота отходящих реакционных газов регенерируется в теплообменнике 4 для нагрева входящей смеси. В холодильнике 7 происходит конденсация продуктов реакции, а в сепараторе 8 разделяются жидкие и газовые потоки. Вода, как менее летучий компонент, конденсируется с большей полнотой. Поэтому для дополнительного выделения спирта производится его отмывка водой в абсорбере 9. Непрореагировавший газэ содержащий 90 -92% этилена, рециркулируют компрессором 2, а часть его сбрасывают, чтобы избежать накопления примесей в системе. Отдувка составляет примерно 20% от введенного этилена и направляется на установку газоразделения для выделения этилена.
Водный конденсат после сепаратора 8 и жидкость из абсорбера 9 дросселируют (сбрасывают давление), в результате чего выделяются растворенные газы, отделяемые в сепараторе низкого давления 10 и направляемые в топливную линию.
Информация о работе Химия и технология получения полипропилена