Эффект Ребиндера в полимерах

Автор работы: Пользователь скрыл имя, 24 Марта 2012 в 16:27, реферат

Описание

Речь пойдет о явлении, очень часто наблюдающемся и хорошо изученном, - о разрушении твердых тел. В самом общем виде его можно представить как распад тела на две или более частей, когда внешняя механическая нагрузка достигает некоего критического значения. Наш повседневный опыт подсказывает, что разрушение сопровождается прорастанием трещины через сечение объекта.

Содержание

1. Введение 3
2. Капля точит не только камень! 3
3. Причуды полимеров 5
4. Ловушки для молекул 8
5. "Пустотный" транспорт 11
6. Заключение 13
7. Литература 14

Работа состоит из  1 файл

Реферат по теме Эффект Ребиндера в полимерах.doc

— 220.50 Кб (Скачать документ)


 

 

 

 

 

 

 

 

 

 

 

 

Реферат на тему:

Эффект Ребиндера в полимерах

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Оглавление

1.       Введение                                                                                                                                            3

2.       Капля точит не только камень!                                                                                                  3

3.       Причуды полимеров                                                                                                                5

4.       Ловушки для молекул                                                                                                                8

5.       "Пустотный" транспорт                                                                                                                11

6.       Заключение                                                                                                                                            13

7.       Литература                                                                                                                                            14


Введение

Речь пойдет о явлении, очень часто наблюдающемся и хорошо изученном, - о разрушении твердых тел. В самом общем виде его можно представить как распад тела на две или более частей, когда внешняя механическая нагрузка достигает некоего критического значения. Наш повседневный опыт подсказывает, что разрушение сопровождается прорастанием трещины через сечение объекта. На молекулярном уровне подобный процесс, даже такой грандиозный, как откалывание гигантского айсберга от края ледника или возникновение тысячекилометрового разлома в земной коре, сводится к последовательному разрыву межатомных и (или) межмолекулярных связей. Растущая трещина порождает как минимум две новые поверхности, которых не было в исходном твердом теле. Атомы (молекулы), оказавшиеся на поверхности, имеют существенно другое энергетическое состояние по сравнению с объемными, поскольку образуется большое число оборванных связей.

Можно ли повлиять на энергозатраты, связанные с образованием новой поверхности, а, следовательно, и на процесс разрушения твердого тела в целом? Этот вопрос представляет не только фундаментальный, теоретический, но и чисто практический интерес - для таких важных отраслей, как бурение скважин, измельчение горных пород, обработка металлов резанием и т.д., и т.п.

Капля точит не только камень!

Выдающийся советский физико-химик академик Петр Александрович Ребиндер был первым, кто попытался воздействовать на работу разрушения твердого тела. Именно Ребиндеру удалось понять, каким образом это можно осуществить. Еще в 20-х годах прошлого века он использовал для этой цели так называемые поверхностно-активные, или адсорбционно-активные, вещества, которые способны эффективно адсорбироваться на поверхности даже при низкой концентрации в окружающей среде и резко снижать поверхностное натяжение твердых тел. Молекулы данных веществ атакуют межмолекулярные связи в вершине растущей трещины разрушения и, адсорбируясь на свежеобразованных поверхностях, ослабляют их. Подобрав специальные жидкости и введя их на поверхность разрушаемого твердого тела, Ребиндер добился поразительного уменьшения работы разрушения при растяжении (рис.1).

Рис. 1. Зависимость напряжения от деформации монокристаллов цинка при 400°С:

1 - на воздухе; 2 - в расплаве олова.

 

На рисунке представлены деформационно-прочностные кривые монокристалла цинка (пластинки толщиной порядка миллиметра) в отсутствие и в присутствии поверхностно-активной жидкости. Момент разрушения в обоих случаях отмечен стрелками. Хорошо видно, что если просто растягивать образец, он разрушается при более чем 600% удлинении. Но если ту же процедуру производить, нанеся на его поверхность жидкое олово, разрушение наступает всего при ~10% удлинении. Поскольку работа разрушения - это площадь под кривой зависимости напряжения от деформации, нетрудно заметить, что присутствие жидкости уменьшает работу даже не в разы, а на порядки. Именно этот эффект и был назван эффектом Ребиндера, или адсорбционным понижением прочности твердых тел [1].

Эффект Ребиндера - универсальное явление, оно наблюдается при разрушении любых твердых тел, в том числе и полимеров. Тем не менее природа объекта вносит свои особенности в процесс разрушения, и полимеры в этом смысле не исключение. Полимерные пленки состоят из крупных целых молекул, удерживаемых вместе силами Ван-дер-Ваальса или водородными связями, которые заметно слабее, чем ковалентные связи внутри самих молекул. Поэтому молекула, даже будучи членом коллектива, сохраняет некие обособленность и индивидуальные качества. Главная особенность полимеров - цепное строение их макромолекул, которое обеспечивает их гибкость. Гибкость молекул, т.е. их способность изменять свою форму (за счет деформации валентных углов и поворотов звеньев) под действием внешнего механического напряжения и ряда других факторов, лежит в основе всех характеристических свойств полимеров. В первую очередь - способности макромолекул к взаимной ориентации. Правда, надо оговориться, что последнее относится только к тем из них, в которых мономерные звенья соединены в цепочки, - к линейным полимерам. Существует огромное количество веществ, имеющих большой молекулярный вес (например, белки и другие биологические объекты), но не обладающих специфическими качествами полимеров, поскольку сильные внутримолекулярные взаимодействия мешают их макромолекулам сгибаться. Более того, типичный представитель полимеров - натуральный каучук, - будучи "сшитым" с помощью специальных веществ (процесс вулканизации), может превратиться в твердое вещество - эбонит, не подающий вообще никаких признаков полимерных свойств.

Ориентационные эффекты в полимерах легко наблюдать в быту. Каждый из нас растягивал руками кусок полиэтиленовой ленты или край пленки. В этом случае происходит образование так называемой шейки (материал резко суживается). Шейка, в отличие от исходной недеформированной пленки, содержит развернутые взаимно ориентированные макромолекулы. Ориентация молекул придает полимеру в целом высокие механические показатели в направлении ориентации. Это явление широко используется в промышленности (ориентационное вытягивание), например для улучшения механических свойств химических волокон.

Взаимное ориентирование макромолекул делает полимеры рекордсменами среди твердых тел по способности к обратимой деформации. Действительно, полимер вроде часто используемой в быту канцелярской резинки, может быть растянут на многие сотни и даже тысячи процентов как раз потому, что молекулярные клубки умеют разворачиваться и выстраиваться. Отпустив растянутую резинку, мы наблюдаем обратный процесс - немедленное ее сокращение до первоначальных размеров. Он обусловлен самопроизвольным переходом ориентированных макромолекул к исходному неориентированному состоянию под действием теплового движения (после нагревания до определенной температуры и вытянутая шейка полимера, подобно канцелярской резинке, восстановит свои размеры). Именно способность макромолекул изменять форму придает полимерам высокую стойкость к разрушению. Не случайно стеклянная бутылка, упав на кафельный пол, разбивается на множество осколков, в то время как пластиковая бутылка всего лишь отскочит от пола на значительную высоту и останется целой.


Причуды полимеров

В полимерах эффект Ребиндера проявляется весьма своеобразно. В адсорбционно-активной жидкости возникновение и развитие новой поверхности наблюдается не только при разрушении, а значительно раньше - еще в процессе деформации полимера, которая, как было отмечено выше, сопровождается ориентацией макромолекул. На рис.2 представлены изображения двух образцов одного и того же полимера (конкретно - лавсана, из которого изготавливают, в частности, столь хорошо всем знакомое текстильное волокно), один из которых был растянут на воздухе, а другой - в адсорбционно-активной жидкости. Хорошо видно, что в первом случае в образце возникает шейка, о которой речь шла выше. Во втором случае пленка не сужается, зато становится молочно-белой и непрозрачной.

Рис. 2. Внешний вид образцов полиэтилентерефталата, растянутых на воздухе (а) и в адсорбционно-активной среде (н-пропаноле) (б).

 

Причины наблюдающегося побеления становятся понятными при микроскопическом исследовании. Оказывается, вместо монолитной прозрачной шейки в полимере образуется уникальная фибриллярно-пористая структура (рис.3), состоящая из нитеобразных агрегатов макромолекул (фибрилл), разделенных микропустотами (порами). В этом случае взаимная ориентация макромолекул достигается не в монолитной шейке, а внутри фибрилл. Поскольку фибриллы разобщены в пространстве, такая структура содержит огромное количество микропустот, которые интенсивно рассеивают свет и придают полимеру молочно-белый цвет. Поры заполняются жидкостью, поэтому гетерогенное строение сохраняется и после снятия деформирующего напряжения. Фибриллярно-пористая структура возникает в особых зонах и по мере деформировании полимера захватывает все больший объем. Возникновение и развитие этих зон оказалось столь неожиданным и удивительным, что они получили английское название crazes (крейзы), а само явление - crazing (крейзинг), что, видимо, подчеркивает его сводящие с ума особенности (crazy (англ.) - сумасшедший, безумный).

Рис. 3. Электронная микрофотография образца полиэтилентерефталата, деформированного в н‑пропаноле. (Увел. 1000.)

 

Эволюция структуры полимера в процессе его вытяжки в активных жидкостях была подробно изучена [2]. С этой целью образцы различных полимеров растягивали в адсорбционно-активных средах, прикладывая контролируемую нагрузку, после чего их исследовали в оптическом и электронном микроскопах. Анализ микроскопических изображений позволил установить особенности структурных перестроек в полимере, подвергаемом крейзингу (рис.4). Зародившись на каком-либо дефекте (неоднородности структуры), которые имеются в изобилии на поверхности любого реального твердого тела, крейзы растут через все сечение растягиваемого полимера в направлении, нормальном оси растягивающего напряжения, сохраняя постоянную и весьма малую (~1 мкм) ширину. В этом смысле они подобны истинным трещинам разрушения. Но когда крейз "перерезает" все поперечное сечение полимера, образец не распадается на отдельные части, а остается единым целым. Это обусловлено тем, что противоположные края такой своеобразной трещины соединены тончайшими ниточками ориентированного полимера (рис.3). Подчеркнем: размеры (диаметры) фибриллярных образований, так же как и разделяющих их микропустот, - 1-10 нм. А ведь измельчить любое твердое тело до столь малых агрегатов чрезвычайно трудно - свободная поверхность всегда "хочет" самопроизвольно уменьшиться, чтобы понизить свою энергию. Простой пример: чтобы взболтать в бутылке воду до образования пузырей, нужно затратить некоторую работу. Обратный же процесс слияния межфазных поверхностей (исчезновение пузырей) произойдет самопроизвольно, без нашего участия.

Рис. 4. Схематическое изображение отдельных стадий крейзинга полимера:

I - инициирование крейзов, II - рост крейзов, III - уширение крейзов.

 

По существу, с помощью эффекта Ребиндера мы элементарным путем (растяжением полимерной пленки в жидкости) придаем полимеру совершенно уникальную структуру с очень высоким уровнем межфазной поверхности. Легко подсчитать: фибриллярно-пористый материал с нанометровыми размерами структурных элементов имеет удельную поверхность, достигающую нескольких сотен квадратных метров на грамм исходного вещества.

И все-таки, невыгодный в энергетическом отношении прирост межфазной поверхности полимера не может продолжаться слишком долго. Когда фибриллы, соединяющие противоположные стенки крейзов, становятся достаточно длинными, начинается процесс их слияния (при этом площадь поверхности уменьшается, рис.5). Другими словами, полимер претерпевает своеобразный структурный переход от рыхлой структуры к более компактной, состоящей из плотно упакованных агрегатов фибрилл, которые ориентированы в направлении оси растяжения.

Рис. 5. Схема, иллюстрирующая коллапс структуры полимера, происходящий при больших значениях деформации в адсорбционно-активной жидкости, на различных стадиях растяжения.


Ловушки для молекул

Итак, простое растяжение полимера в жидкости приводит к возникновению развитой межфазной поверхности, обладающей значительной площадью. Как упоминалось в начале, атомы (молекулы), оказавшиеся на поверхности, имеют большое число оборванных связей - вакансий для образования новых связей. Эти вакансии могут быть заполнены свободными молекулами из окружающего пространства. Такое связывание молекул твердой поверхностью называется адсорбцией; она широко используется в практике для очистки газов и жидкостей, в том числе для очистки воздуха с помощью, например, противогаза. Естественно предположить, что полимеры, подвергнутые крейзингу, тоже должны быть способны к адсорбции. Так ли это, было проверено с помощью специального цикла экспериментов. Образец полимера растягивали в адсорбционно-активной жидкости на необходимую величину, после чего его извлекали из зажимов растягивающего устройства, помещали в раствор адсорбата (йода или органического красителя родамина С) и оценивали степень адсорбции путем измерения концентрации адсорбата в растворе.

Рис. 6. Изотермы сорбции йода (а) и родамина С (б) из их водных растворов образцами полиэтилентерефталата, растянутыми в н-пропаноле до различных степеней вытяжки:

1 - 20%, 2 - 50%, 3 - 100%, 4 - 150%, 5 - 200%, 6 - 300%, 7 - 400%.


На рис.6 представлены изотермы адсорбции двух веществ - йода (а) и родамина С (б) - из их водных растворов. Хорошо видно, что полимер, растянутый в жидкости, действительно становится эффективным адсорбентом, способным поглощать любые низкомолекулярные вещества из их растворов. Причем эффективность адсорбции зависит как от величины деформации полимера, так и от молекулярных размеров сорбируемого вещества (молекулы йода имеют размер ~0.5 нм, а молекулы родамина С - 17.5 нм), рис.7.

Из рисунка хорошо видно, что адсорбция йода при малых степенях удлинения возрастает, а затем, достигнув максимума, перестает изменяться, в то время как более объемные молекулы родамина С в области 200%-го удлинения демонстрируют резкий спад адсорбции. Очевидно, крейзы, возникающие на первых этапах растяжения, содержат пустоты больших размеров, легко доступные даже крупным молекулам родамина С. По мере вытяжки крейзы разрастаются, что увеличивает площадь межфазной поверхности полимера, и, соответственно, возрастает адсорбция. Но когда начинается описанный выше структурный переход, приводящий к сжатию структуры и уменьшению эффективного диаметра пор, сокращается число пустот, доступных молекулам сначала родамина С (начиная со 250%-го удлинения), а затем и йода (с 300%-го). Таким образом, существует метод разделения молекул путем адсорбции из раствора тех из них, которые способны проникать в поры данного размера (молекулярно-ситовый эффект). Поскольку размер пор можно легко регулировать, изменяя степень вытяжки полимера в адсорбционно-активной среде (используя эффект Ребиндера), легко добиться избирательной адсорбции.

Информация о работе Эффект Ребиндера в полимерах