Автор работы: Пользователь скрыл имя, 25 Марта 2012 в 01:38, реферат
Генная инженерия - направление исследований в молекулярной биологии и генетике, конечной целью которых является получение с помощью лабораторных приемов организмов с новыми, в том числе и не встречающимися в природе, комбинациями наследственных свойств. Генная инженерия позволяет путем операций в пробирке переносить генетическую информацию из одного организма в другой. Перенос генов дает возможность преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим.
1. Введение
2. Что такое ген
3. Открытие двойной структуры молекулы ДНК и матричного синтеза
4. Генетическая инженерия
5. Достижения и проблемы современной генетики
6. Создание трансгенных растений
7. Генные вакцины
8. Перспективы клонирования животных и человека
9. Геном человека
10. Другие генные открытия
11. Заключение
12. Список литературы
Человеческие белки, например ИНСУЛИН, ИНТЕРФЕРОН, могут быть получены микробиологическим синтезом в клетках бактерий, несущих соответствующий ген человека. Свойства самих бактерий могут быть изменены в сторону сверх синтеза нужного микробного препарата. На этих основах создается новая биотехнологическая промышленность, которая в недалеком будущем окажет большое влияние на успехи сельского хозяйства и медицины.
Вместе с тем и в сегодняшних исследованиях по генной терапии необходимо учитывать, что последствия манипулирования генами изучены недостаточно. При разработке программ генной терапии принципиальное значение имеют вопросы безопасности предлагаемых схем лечения, как для самого пациента, так и для популяции в целом. Важно, что при проведении испытаний ожидаемый лечебный эффект или возможность получения дополнительной полезной информации превосходили потенциальный риск предлагаемой процедуры. Важнейшим элементом в программе генной терапии является анализ последствий проводимых процедур. Этот контроль проводят на всех этапах терапии. Проводится оценка клинического (терапевтического) эффекта; изучаются возможные побочные последствия и способы их предупреждения.
Идея клонирования животных, т.е. получение генетически идентичных копий, родилась благодаря успешным экспериментам по пересадке ядер дифференцированных клеток в энуклеированные яйцеклетки или ооциты, выполненным на амфибиях. Цель этих экспериментов была сугубо теоретическая - выяснить вопрос, способно ли ядро(геном) обеспечить полное развитие подобно оплодотворенной яйцеклетке. Фактически речь шла о возможности обратимости эмбриональной дифференцировки и выяснению вопроса: претерпевает ли геном в процессе развития необратимые изменения или модификации? Успешные опыты J.Gurdon и его сотрудников, показавшие возможность развития взрослых амфибий из реконструированных яйцеклеток после трансплантации в них ядер из клеток эпителия кишечника плавающей личинки (головастика), были интерпретированы как убедительное доказательство, что геном дифференцированных клеток способен к репрограммированию в цитоплазме яйцеклетки и восстановлению тотипотентности, подобно оплодотворенному яйцу. Из этих результатов логично вытекало, что, используя технику трансплантации ядер из соматических клеток взрослых особей в энуклеированные яйца или ооциты, можно получать генетические копии животного, служившего донором ядер дифференцированных клеток. Безусловно, клонирование животных открывало бы заманчивые перспективы для генетического копирования животных, прежде всего сельскохозяйственных, тех, которые имеют те или иные выдающиеся показатели продуктивности.
Однако первые попытки применить описанный выше подход для клонирования млекопитающих были безуспешными и даже скандальными. Сенсационные результаты Illmensee по рождению мышей, развившихся после пересадки кариопластов из разных частей предимплантационных эмбрионов мыши в энуклеированные яйца, не были подтверждены другими исследователями. Эти результаты вызвали еще большие сомнения после заявления лаборанта Illmensee, что результаты опытов Illmensee были фальсифицированы. В начале 80-х годов эксперименты по трансплантации ядер дифференцированных клеток в энуклеированные яйца или ооциты показали, что у мышей тотипотентность утрачивается после 2-го деления-дробления. Другой экспериментальный подход для изучения тотипотентности эмбрионов был основан на разделении бластомеров на ранних стадиях развития (до 16-клеточной стадии) и независимой их трансплантации приемным матерям. Результаты этих экспериментов показали, что у мышей тотипотентность утрачивается после 4-клеточ-ной стадии, хотя у овец такая потеря происходит на более поздней стадии развития (после 16-клеточной стадии). Открытие импринтинга и его существенной роли в развитии млекопитающих сделало еще более проблематичной возможность клонирования млекопитающих, поскольку выяснилось, что материнский и отцовский геномы имеют разный вклад в нормальное развитие эмбриона, причем эти функциональные различия родительских геномов формируются в процессе овогенеза и сперматогенеза, импринтируются и реализуются в течение всего онтогенеза.
Тем не менее, исследования тотипотентности и плюрипотентности в эмбриональном развитии продолжались с использованием новых экспериментальных подходов. Уже в конце 80-х годов стало очевидным, что ооцит на стадии М2 (второе меойтическое деление) обладает факторами, способными репрограммировать геном клеток, полученных из внутренней клеточной массы бластоцисты после их трансплантации в энуклеированный ооцит М2. Здесь следует отметить значительный вклад в разработку этой техники шотландской группы исследователей под руководством Ian Wilmut и американских исследователей Keefer, Mathews и First. В 1996 г. вышли две публикации по успешному рождению ягнят и развитию эмбрионов коров до 80-85 дней беременности в экспериментах по трансплантации кариопластов, полученных из клеток культуры эмбриональных стволовых клеток, в энуклеированные ооциты М2 (Campbell et al., 1996; Keefer et al., 1996). По-видимому, эти успехи подтолкнули Ian Wilmut и его коллег попытаться использовать в качестве доноров ядра (кариопласты) дифференцированных клеток, взятых от эмбрионов или взрослых животных.
Эксперименты по клонированию животных ведутся давно. Достаточно убрать из яйцеклетки ядро, имплантировать в нее ядро другой клетки, взятой из эмбриональной ткани, и вырастить ее — либо в пробирке, либо в чреве приемной матери. Результатом этих экспериментов явилось рождение Dolly, овцы, развившейся из ооцита М2, у которого было заменено собственное ядро на ядро клетки из культуры эпителиальных клеток, полученной из молочной железы взрослой лактирующей овцы. Вне всяких сомнений, это выдающийся успех в клонировании животных. Впервые предложен, хотя и сложный в техническом отношении, способ получения генетических копий млекопитающих. Несомненно, также и то, что клонирование станет сильнейшим стимулом для развития нового направления в биотехнологии животных и откроет широкие возможности в селекции сельскохозяйственных животных.
С помощью клонирования можно получить более миллиона копий любого фрагмента ДНК человека или другого организма. Если клонированный фрагмент кодирует белок, то экспериментально можно изучить механизм, регулирующий транскрипцию этого гена, а также наработать этот белок в нужном количестве. Кроме того, клонированный фрагмент ДНК одного организма можно ввести в клетки другого организма. Этим можно добиться, например, высокие и устойчивые урожаи благодаря введенному гену, обеспечивающему устойчивость к ряду болезней. Если ввести в генотип почвенных бактерий гены других бактерий, обладающих способностью связывать атмосферный азот, то почвенные бактерии смогут переводить этот азот в связанный азот почвы. Введя в генотип бактерии кишечной палочки ген из генотипа человека, контролирующий синтез инсулина, ученые добились получения инсулина при посредстве такой кишечной палочки. При дальнейшем развитии науки станет возможным введение в зародыш человека недостающих генов, и тем самым позволит избежать генетических болезней.
Геном человека.
Современная генетика обеспечила новые возможности для исследования деятельности организма: с помощью индуцированных мутаций можно выключать и включать почти любые физиологические процессы, прерывать биосинтез белков в клетке, изменять морфогенез, останавливать развитие на определенной стадии. Мы теперь можем глубже исследовать популяционные и эволюционные процессы, изучать наследственные болезни, проблему раковых заболеваний и многое другое. В последние годы бурное развитие молекулярно-биологических подходов и методов позволило генетикам не только расшифровать геномы многих организмов, но и конструировать живые существа с заданными свойствами. Таким образом, генетика открывает пути моделирования биологических процессов и способствует тому, что биология после длительного периода дробления на отдельные дисциплины вступает в эпоху объединения и синтеза знаний.
Еще с 80-х годов появились программы по изучению генома человека. В процессе выполнения этих программ уже прочитано около 5 тысяч генов (полный геном человека содержит 50-100 тысяч). Обнаружен ряд новых генов человека. Генная инженерия приобретает все большее значение в генотерапии. Потому, что многие болезни заложены на генетическом уровне. Именно в геноме заложена предрасположенность ко многим болезням или стойкость к ним. Многие ученые считают, что в XXI веке будет функционировать геномная медицина и генная инженерия.
Международные проект «Геном человека» был начат в 1988 г. Это один из самых трудоемких и дорогостоящих проектов в истории науки. Если в 1990 г. на него было потрачено около 60 млн. долларов в целом, то в 1998 г. одно только правительство США израсходовало 253 млн. долларов, а частные компании – и того больше. В проекте задействованы несколько тысяч ученых из более чем 20 стран. С 1989 г. в нем участвует и Россия, где по проекту работает около 100 групп. Все хромосомы человека поделены между странами-участницами, и России для исследования достались 3-, 13- и 19-я хромосомы.
Основная цель проекта – выяснить последовательность нуклеотидных оснований во всех молекулах ДНК человека и установить локализацию, т.е. полностью картировать все гены человека. Проект включает в качестве подпроектов изучение геномов собак, кошек, мышей, бабочек, червей и микроорганизмов. Ожидается, что затем исследователи определят все функции генов и разработают возможности использования полученных данных.
Что же представляет собой основной предмет проекта – геном человека?
Известно, что в ядре каждой соматической клетки (кроме ядра ДНК есть еще и в митохондриях) человека содержится 23 пары хромосом, каждая хромосома представлена одной молекулой ДНК. Суммарная длина всех 46 молекул ДНК в одной клетке равна приблизительно 2 м, они содержат около 3,2 млрд. пар нуклеотидов. Общая длина ДНК во всех клетках человеческого тела (их примерно 5х1013) составляет 1011 км, что почти в тысячу раз больше расстояния от Земли до Солнца.
Первым крупным успехом стало полное картирование в 1995 г. генома бактерии Haemophilus influenzae. Позднее были полностью описаны геномы еще более 20 бактерий, среди которых возбудители туберкулеза, сыпного тифа, сифилиса и др. В 1996 г. картировали ДНК первой эукариотической клетки – дрожжей, а в 1998 г. впервые был картирован геном многоклеточного организма – круглого червя Caenorhabolitis elegans. К 1998 г. установлены последовательности нуклеотидов в 30 261 гене человека, т.е. расшифрована примерно половина генетической информация человека.
Полученные данные позволили впервые реально оценить функции генов в организме человека
В ходе выполнения проекта «Геном человека» было разработано много новых методов исследования, большинство из которых в последнее время автоматизировано, что значительно ускоряет и удешевляет работу по расшифровке ДНК. Эти же методы анализа могут использоваться и для других целей: в медицине, фармакологии, криминалистике и т.д.
Расшифровка геномов бактерий позволяет создавать новые действенные и безвредные вакцины и качественные диагностические препараты.
Конечно, достижения проекта «Геном человека» могут применяться не только в медицине или фармацевтике.
По последовательностям ДНК можно устанавливать степень родства людей, а по митохондриальной ДНК – точно устанавливать родство по материнской линии. Разработан метод «генетической дактилоскопии», который позволяет идентифицировать человека по следовым количествам крови, чешуйкам кожи и т.п. Этот метод с успехом применяется в криминалистике – уже тысячи людей оправданы или осуждены на основании генетического анализа. Сходные подходы можно использовать в антропологии, палеонтологии, этнографии, археологии и даже в такой, казалось бы, далекой от биологии области, как сравнительная лингвистика.
В результате проведенных исследований появилась возможность сравнивать геномы бактерий и различных эукариотических организмов. Выяснилось, что в процессе эволюционного развития у организмов увеличивается количество интронов, т.е. эволюция сопряжена с «разбавлением» генома: на единицу длины ДНК приходится все меньше информации о структуре белков и РНК (экзоны) и все больше участков, не имеющих ясного функционального значения (интроны). Это одна из больших загадок эволюции.
Раньше ученые–эволюционисты выделяли две ветви в эволюции клеточных организмов: прокариоты и эукариоты. В результате сравнения геномов пришлось выделить в отдельную ветвь архебактерии – уникальные одноклеточные организмы, сочетающие в себе признаки прокариот и эукариот.
В настоящее время также интенсивно изучается проблема зависимости способностей и талантов человека от его генов. Главная задача будущих исследований – это изучение однонуклеотидных вариаций ДНК в клетках разных органов и выявление различий между людьми на генетическом уровне. Это позволит создавать генные портреты людей и, как следствие, эффективнее лечить болезни, оценивать способности и возможности каждого человека, выявлять различия между популяциями, оценивать степень приспособленности конкретного человека к той или иной экологической обстановке и т.д.
Другие генные открытия
В Институте цитологии и генетики СО РАН были впервые получены гибридные клетки путем слияния высокоплюрипотентных стволовых эмбриональных клеток с клетками селезенки взрослой мыши. Некоторые клоны гибридных клеток имели нормальный диплоидный набор хромосом и дополнительную Х-хромосому, происходящую из
высокодифференцированной клетки.
В экспериментах по микроинъекциям гибридных клеток в полость бластоцисты была получена серия химерных животных, что показало сохранение высокой плюрипотентности в гибридных клетках. Однако самым впечатляющим результатом этих опытов было обнаружение функциональной "соматической" Х-хромосомы (происходящей от дифференцированной клетки) в разных тканях и органах химер. Показана возможность репрограммирования индивидуальной хромосомы, происходящей от дифференцированной клетки, при введении ее в геном плюрипотентных эмбриональных клеток. Иными словами, получены сходные данные по обратимости дифференцировки на уровне индивидуальных хромосом генома дифференцированной клетки, подобно реактивации целого генома в опытах Ian Wilmut. Другим следствием этого исследования является возможность переноса индивидуальных хромосом от одного животного в геном другого этого же или близкого вида. Таким образом, открывается перспектива использовать плюрипотентные гибридные клетки в качестве носителей-векторов для переноса индивидуальных хромосом между животными и создавать уникальные генотипы, не существующие в природе, поскольку их невозможно получить обычным половым путем.