Автор работы: Пользователь скрыл имя, 02 Апреля 2012 в 23:47, реферат
Смачивание, явление, возникающее при соприкосновении жидкости с поверхностью твёрдого тела или другие жидкости. Оно выражается, в частности, в растекании жидкости по твёрдой поверхности, находящейся в контакте с газом (паром) или другой жидкостью, пропитывании пористых тел и порошков, искривлении поверхности жидкости у поверхности твёрдого тела. Так, смачивание вызывает образование сферического мениска в капиллярной трубке, определяет форму капли на твёрдой поверхности или форму газового пузырька, прилипшего к поверхности погруженного в жидкость тела.
1. Смачивание и растекание
Смачивание, явление, возникающее при соприкосновении жидкости с поверхностью твёрдого тела или другие жидкости. Оно выражается, в частности, в растекании жидкости по твёрдой поверхности, находящейся в контакте с газом (паром) или другой жидкостью, пропитывании пористых тел и порошков, искривлении поверхности жидкости у поверхности твёрдого тела. Так, смачивание вызывает образование сферического мениска в капиллярной трубке, определяет форму капли на твёрдой поверхности или форму газового пузырька, прилипшего к поверхности погруженного в жидкость тела. Смачивание часто рассматривают как результат межмолекулярного (вандерваальсова) взаимодействия в зоне контакта трёх фаз (тел, сред). Однако во многих случаях, например при соприкосновении жидких металлов с твёрдыми металлами, окислами, алмазом, графитом, смачивание обусловлено не столько межмолекулярным взаимодействием, сколько образованием химических соединений, твёрдых и жидких растворов, диффузионными процессами в поверхностном слое смачиваемого тела. Тепловой эффект, сопровождающий соприкосновение жидкости со смачиваемой поверхностью, называется теплотой смачивания.
Мерой смачивания обычно служит краевой угол между смачиваемой поверхностью и поверхностью жидкости на периметре смачивания. Угол отсчитывают со стороны жидкости. При статическом (равновесном) смчивании он связан с поверхностным натяжением жидкости , поверхностным натяжением твёрдого тела и межфазным натяжением на границе твёрдое тело — жидкость уравнением Юнга:
= .
Величиной угла оценивают лиофильность и лиофобность поверхностей по отношению к различным жидкостям. На лиофильной поверхности жидкость растекается, т. е. имеет место частичное (0° << 90°) или полное смачивание; на лиофобной — растекания не происходит (>90°) (рис. 3). Краевой угол зависит от соотношения сил сцепления молекул жидкости с молекулами или атомами смачиваемого тела (адгезия) и сил сцепления молекул жидкости между собой (когезия). Обратимую работу адгезии и когезии вычисляют соответственно по уравнениям: и . При всегда >0°, причём с увеличением отношения улучшается смачивание.
Разность называется коэффициентом растекания. Часто наблюдаемая задержка в установлении равновесных краевых углов называется гистерезисом смачивания. Различают кинетический (динамический) и статический гистерезис смачивания. Причиной гистерезиса может быть шероховатость поверхности, особенности структуры поверхностного слоя, релаксационные процессы в жидкой фазе и др. Если твёрдое тело соприкасается одновременно с двумя несмешивающимися жидкостями, происходит избирательное смачивание. Эффективные регуляторы смачивания — поверхностно-активные вещества, которые могут как улучшать, так и ухудшать смачивание.
Смачивание имеет важное значение в природе, промышленной технологии, быту. Хорошее смачивание необходимо при крашении и стирке, обработке фотографических материалов, нанесении лакокрасочных покрытий, пропитке волокнистых материалов, склеивании, пайке, амальгамировании и т. д. Снизить смачивание до минимума стремятся при получении гидрофобных покрытий, гидроизоляционных материалов и др. В некоторых случаях, например при флотации и эмульгировании твёрдыми эмульгаторами, требуется сохранение краевых углов в определённом интервале значений. Смачивание играет первостепенную роль в металлургических процессах, при диспергировании твёрдых тел в жидкой среде. Оно влияет на распространение грунтовых вод, увлажнение почв, разнообразные биологические и другие природные процессы. В развитие теории и разработку прикладных вопросов смачивание большой вклад внесли П. А. Ребиндер, А. Н. Фрумкин, Б. В. Дерягин и др.
2. Капиллярные явления
Капиллярные явления, физические явления, обусловленные действием поверхностного натяжения на границе раздела несмешивающихся сред. К капиллярным явлениям относят обычно явления в жидких средах, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собственным паром. Искривление поверхности ведёт к появлению в жидкости дополнительного капиллярного давления Ɗp, величина которого связана со средней кривизной r поверхности уравнением Лапласа:
Ɗp = ,
где ( — поверхностное натяжение на границе двух сред; и — давления в жидкости 1 и контактирующей с ней среде (фазе) 2. В случае вогнутой поверхности жидкости ( < 0) давление в ней понижено по сравнению с давлением в соседней фазе: < и Ɗp < 0. Для выпуклых поверхностей ( > 0) знак Ɗp меняется на обратный. Капиллярное давление создаётся силами поверхностного натяжения, действующими по касательной к поверхности раздела. Искривление поверхности раздела ведёт к появлению составляющей, направленной внутрь объёма одной из контактирующих фаз. Для плоской поверхности раздела ( = ¥) такая составляющая отсутствует и Ɗp = 0.
Капиллярные явления охватывают различные случаи равновесия и движения поверхности жидкости под действием межмолекулярных сил и внешних сил (в первую очередь силы тяжести).
В простейшем случае когда внешние силы отсутствуют или скомпенсированы, поверхность жидкости всегда искривлена. Так, в условиях невесомости ограниченный объём жидкости, не соприкасающейся с др. телами, принимает под действием поверхностного натяжения форму шара. Эта форма отвечает устойчивому равновесию жидкости, поскольку шар обладает минимальной поверхностью при данном объёме, и, следовательно, поверхностная энергия жидкости в этом случае минимальна.
Форму шара жидкость принимает и в том случае, если она находится в другой, равной по плотности жидкости (действие силы тяжести компенсируется архимедовой выталкивающей силой). При нескомпенсированной силе тяжести картина существенно меняется Маловязкая жидкость (например, вода), взятая в достаточном количестве, принимает форму сосуда, в который она налита. Её свободная поверхность оказывается практически плоской, т.к. силы земного притяжения преодолевают действие поверхностного натяжения, стремящегося искривить и сократить поверхность жидкости. Однако по мере уменьшения массы жидкости роль поверхностного натяжения снова становится определяющей: при дроблении жидкости в среде газа или газа в жидкости образуются мелкие капли или пузырьки практически сферической формы.
Свойства систем, состоящих из многих мелких капель или пузырьков (эмульсии, жидкие аэрозоли, пены), и условия их образования во многом определяются кривизной поверхности частиц, т. е. Капиллярные явления Не меньшую роль Капиллярные явления играют и при образовании новой фазы: капелек жидкости при конденсации паров, пузырьков пара при кипении жидкостей, зародышей твёрдой фазы при кристаллизации.
При контакте жидкости с твёрдыми телами на форму её поверхности существенно влияют явления смачивания, обусловленные взаимодействием молекул жидкости и твёрдого тела. На рис. 1 показан профиль поверхности жидкости, смачивающей стенки сосуда. Смачивание означает, что жидкость сильнее взаимодействует с поверхностью твёрдого тела (капилляра, сосуда), чем находящийся над ней газ. Силы притяжения, действующие между молекулами твёрдого тела и жидкости, заставляют её подниматься по стенке сосуда, что приводит к искривлению примыкающего к стенке участка поверхности. Это создаёт отрицательное (капиллярное) давление, которое в каждой точке искривленной поверхности в точности уравновешивает давление, вызванное подъёмом уровня жидкости. Гидростатическое давление в объёме жидкости при этом изменений не претерпевает.
Если сближать плоские стенки сосуда таким образом, чтобы зоны искривления начали перекрываться, то образуется вогнутый мениск — полностью искривленная поверхность. В жидкости под мениском капиллярное давление отрицательно, под его действием жидкость всасывается в щель до тех пор, пока вес столба жидкости (высотой h) не уравновесит действующее капиллярное давление Dp. В состоянии равновесия:
Ɗp = ,
где и — плотность жидкости 1 и газа 2; — ускорение свободного падения. Это выражение, известное как формула Д. Жюрена (J. Jurin, 1684—1750), определяет высоту капиллярного поднятия жидкости, полностью смачивающей стенки капилляра. Жидкость, не смачивающая поверхность, образует выпуклый мениск, что вызывает сё опускание в капилляре ниже уровня свободной поверхности (< 0).
Капиллярное впитывание играет существенную роль в водоснабжении растений, передвижении влаги в почвах и др. пористых телах. Капиллярная пропитка различных материалов широко применяется в процессах химической технологии.
Искривление свободной поверхности жидкости под действием внешних сил обусловливает существование т. н. капиллярных волн («ряби» на поверхности жидкости). Капиллярные явления при движении жидких поверхностей раздела рассматривает физико-химическая гидродинамика.
Движение жидкости в капиллярах может быть вызвано разностью капиллярных давлений, возникающей в результате различной кривизны поверхности жидкости. Поток жидкости направлен в сторону меньшего давления: для смачивающих жидкостей — к мениску с меньшим радиусом кривизны (рис. 2, а).
Пониженное, в соответствии с уравнением Кельвина, давление пара над смачивающими менисками является причиной капиллярной конденсации жидкостей в тонких порах.
Отрицательное капиллярное давление оказывает стягивающее действие на ограничивающие жидкость стенки (рис. 2, б). Это может приводить к значительной объёмной деформации высокодисперсных систем и пористых тел — капиллярной контракции. Так, например, происходящий при высушивании рост капиллярного давления приводит к значительной усадке материалов.
Многие свойства дисперсных систем (проницаемость, прочность, поглощение жидкости) в значительной мере обусловлены Капиллярные явления, т.к. в тонких порах этих тел реализуются высокие капиллярные давления.
Капиллярные явления впервые были открыты и исследованы Леонардо да Винчи (15 в.), затем Б. Паскалем (17 в.) и Д. Жюреном (18 в.) в опытах с капиллярными трубками.
Список используемо литературы:
1. Адам Н. К., Физика и химия поверхностей, пер. с англ., М., 1947;
2. Громека И. О., Собр. соч., М., 1952.
3. http://www.cultinfo.ru/
4. http://www.xumuk.ru/
3