Математическая обработка результатов анализа

Автор работы: Пользователь скрыл имя, 29 Февраля 2012 в 17:08, реферат

Описание

Математическая обработка результатов анализа
На любом этапе анализа могут быть допущены и, как правило, допускаются погрешности, поэтому, чем меньшее число этапов имеет анализ, тем точнее его результаты.
Погрешностью измерения называют отклонение результата измерений xi от истинного значения измеряемой величины х.

Работа состоит из  1 файл

Математическая обработка результатов анализа.docx

— 29.70 Кб (Скачать документ)

  Математическая обработка результатов анализа

  На любом этапе анализа могут быть допущены и, как правило, допускаются погрешности, поэтому, чем меньшее число этапов имеет анализ, тем точнее его результаты.

  Погрешностью измерения называют отклонение результата измерений xот истинного значения измеряемой величины х.

  Разность х- х = ∆х называется абсолютной погрешностью, а отношение (х/х)100% называется относительной погрешностью.

  Погрешности результатов количественного анализа подразделяют на грубые (промахи), систематические и случайные. На их основе проводят оценку качества полученных результатов анализа. Параметрами качества являются их правильность, точность, воспроизводимость и надежность.

  Результат анализа считается правильным, если у него нет грубой и систематической погрешности, а если, кроме того, случайная погрешность сведена к минимуму, то точным, соответствующим истинному. Для получения точных результатов измерения количественные определения повторяют несколько раз (обычно нечетное).

  Грубыми погрешностями (промахами) называются те, которые приводят к резкому отличию результата повторного измерения от остальных. Причинами промахов являются грубые оперативные ошибки аналитика (например потеря части осадка при его фильтровании или взвешивании, неправильное вычисление или запись результата). Промахи выявляют среди серии результатов повторных измерений, как правило, с помощью Q-критерия. Для его расчета результаты выстраивают в ряд по возрастанию: х1, х2, х3,…хn-1, хn. Сомнительным обычно является первый или последний результат в этом ряду.

  Q-критерий вычисляют как отношение взятой по абсолютной величине разности сомнительного результата и ближайшего к нему в ряду к разности последнего и первого в ряду. Разность х- хназывают размахом варьирования.

 Например, если сомнителен последний результат в ряду, то

 Для выявления промаха рассчитанное для него Q сравнивают с табличным критическим значением Qтабл, приведенным в аналитических справочниках.   Если Q  Qтабл, то сомнительный результат исключают из рассмотрения, считая промахом. Промахи должны быть выявлены и устранены.

  Грубые ошибки являются результатом промахов и просчетов. Их можно избежать при внимательном и аккуратном отношении к работе и организации надежного полевого контроля измерений. В теории ошибок грубые ошибки не изучаются.

  Систематическими погрешностями считают те, которые приводят к отклонению результатов повторных измерений на одну и ту же только положительную или отрицательную величину от истинного значения. Их причиной может быть неправильная калибровка измерительных приборов и инструментов, примеси в применяемых реактивах, неправильные действия (например, выбор индикатора) или индивидуальные особенности аналитика (например, зрение). Систематические погрешности могут и должны быть устранены. Для этого используют:

1) получение результатов  количественного анализа несколькими  различными по природе методами;

2) отработку методики  анализа на стандартных образцах, т.е. материалах, содержание определяемых  веществ, в которых известно  с высокой точностью;

3) метод добавок (метод  «введено-найдено»).

 

 Случайные погрешности - это те, которые ведут к незначительным отклонениям результатов повторных измерений от истинного значения по причинам, возникновение которых выяснить и учесть невозможно (например колебания напряжения в электросети, настроение аналитика и т.п.). Случайные погрешности вызывают разброс результатов повторных определений, проведенных в идентичных условиях. Разброс определяет воспроизводимость результатов, т.е. получение одинаковых или близких результатов при повторных определениях. Количественной характеристикой воспроизводимости является стандартное отклонение S, которое находят методами математической статистики. Для небольшого числа измерений (малой выборки) при n=1-10.

  Случайные ошибки измерений обусловлены точностью способа измерений (строгостью теории), точностью измерительного прибора, квалификацией исполнителя и влиянием внешних условий. Закономерности случайных ошибок проявляются в массе, то есть, при большом количестве измерений; такие закономерности называют статистическими. Освободить результат единичного измерения от случайных ошибок невозможно; невозможно также предсказать случайную ошибку единичного измерения. Теория ошибок занимается в основном изучением случайных ошибок.

  Случайная истинная ошибка измерения Δ - это разность между измеренным значением величины l и ее истинным значением X:

                      

 Свойства случайных ошибок.

 Случайные ошибки подчиняются  некоторым закономерностям:

  при данных условиях измерений абсолютные значения случайных ошибок не превосходят некоторого предела; если какая-либо ошибка выходит за этот предел, она считается грубой, положительные и отрицательные случайные ошибки равно возможны, среднее арифметическое случайных ошибок стремится к нулю при неограниченном возрастании числа измерений. Третье свойство случайных ошибок записывается так:

                    

малые по абсолютной величине случайные ошибки встречаются чаще, чем большие. Кроме того, во всей массе случайных ошибок не должно быть явных закономерностей ни по знаку, ни по величине. Если закономерность обнаруживается, значит здесь сказывается влияние какой-то систематической ошибки.

 

 

 

 

 

 

 

 

Результаты  выборки

  Выборной называют совокупность результатов повторных измерений. Сами результаты называют вариантами выборки. Совокупность результатов бесконечно большого числа измерений называют генеральной выборкой, а вычисленное по ней стандартное отклонение обозначают S. Стандартное отклонение S показывает, на какую в среднем величину отклоняются результаты n измерений от среднего результата x или истинного.

 Квадрат величины стандартного отклонения S22) называют дисперсией результатов измерения. Она показывает среднеквадратичное отклонение результатов повторных измерений от среднего x или истинного значения.

  В процентах воспроизводимость оценивают по величине относительного стандартного отклонения:

  Обычно считают при S = 1…5% воспроизводимость результатов измерения хорошей, при S = 5…10% - удовлетворительной, при S 10…15% - плохой, хотя эта шкала воспроизводимости условна и зависит от метода анализа.

  В соответствии с теорией погрешностей (ошибок) известная величина S позволяет утверждать, что в 68 случаях из 100 случайная погрешность <  1S, в 95 из 100 <  2S, а в 99 из 100 < 3S.

   Отношение числа случаев, в которых происходит некоторое событие, к общему числу рассматриваемых случаев называется доверительной вероятностью (статистической надежностью) Р. Для вышеуказанного Р составляет: 0,68 (68%), 0,95 (95%), 0,99 (99%). Обычно при оценке экспериментальных данных принимают Р = 95%.

  Пользуясь найденным значением S как критерием, можно выявить промахи (когда Q-критерий близок к Qтабл) при условии, а также оценить надежность полученного единичного или среднего результата анализа. Под ее оценкой понимают нахождение доверительных границ результата анализа, т.е. границ интервала значений вокруг единичного или среднего результата, внутри которого с заданной при расчетах доверительной вероятностью можно ожидать нахождение истинного значения результата. Интервал, ограниченный этими границами называется доверительным: ,где - коэффициент распределения Стьюдента, табулированный при заданном Р и степени свободы К = n-1. Таблица со значением tк,р приводится в аналитических справочниках. Данные этой таблицы свидетельствуют о том, что чем меньше n и больше P, тем больше tк,р, а, следовательно, шире доверительный интервал и меньше надежность результата анализа. Величина tк,р особенно резко падает при увеличении n до пяти параллельных измерений. Дальнейшее увеличение n ведет к менее интенсивному уменьшению tк,р и сужению доверительного интервала. Например, при Р = 95% и двух, пяти и десяти параллельных измерениях коэффициент Стьюдента соответственно равен 12,71; 2,78; 2,26, а доверительный интервал Xкр. составляет 9S, 2,5S, 1,6S. Поэтому для получения надежных результатов необходимо делать не менее пяти повторных измерений. При представлении (записи) конечного результата анализа доверительный интервал показывают двумя числами Xкр, указывая обязательно n и Р, при которых он вычислен.

  Химические элементы, имеющие переменную степень окисления, могут быть количественно определены титриметрически с применением окислительно-восстановительной реакции (ОВР). Методы окислительно-восстановительного титрования называют оксред, или редоксиметрией (от латинского oxydatio - окисление и reductio - восстановление). По веществу титранта оксредметрию подразделяют на оксидиметрию и редуциометрию. В оксидиметрии в качестве вещества рабочего раствора используют окислители, а в редуциометрии - восстановители.

  В зависимости от решаемой аналитической задачи в редоксиметрии используют прямое, обратное и заместительное титрования. Редокси-метрически могут быть количественно определены как неорганические, так и органические вещества. Например, восстановлением с помощью перманганата калия в сильнощелочной среде могут быть определены метанол, муравьиная, винная, лимонная, салициловая кислоты, а также глицерин, фенол, формальдегид и др.

  Схематично ОВР, с учетом закона электронейтральности раствора, можно изобразить следующим образом:

OX1+z1eRedz2

Red2-z2eOXz1

z2OX1+z1Red2-z2Red1+z1OX2

  Здесь индексы 1 и 2 относятся к веществам 1и 2 в окисленной (OXи OX2) и восстановленной (Redи Red2) формах. В ходе ОВР вещество ОХс большим сродством к электрону (окислитель) присоединяет электроны, понижает свою степень окисления, восстанавливается, а вещество Redс меньшим сродством к электрону (восстановитель) окисляется.

  Окисленная и восстановленная формы реагирующих в ОВР веществ образуют окислительно-восстановительные (оксред-, редокс-) пары ОХ1/RedиOX2/Red2, а превращения типа OX+zeRed называют оксред- (редокс) -переходами или окислительно-восстановительными полу реакциями. Если редокс-переходы обратимы, т.е. могут протекать при изменении условий как в одну, так и в другую сторону, то для количественной оценки редокс-свойств редокс-пар используют редокс- (окислительно-восстановительные) потенциалы. Редокс-понциал редокс-пары может быть электрохимически измерен. Для этого в раствор с компонентами редокс-пары (например, MnO4-/Mn2+) можно поместить платиновую пластинку (проволоку), не реагирующую с веществами редокс-пары, образовав, таким образом, редокс-электрод. Соединив платину редокс-электрода со стандартным водородным электродом, получим гальванический элемент, ЭДС которого можно измерить потенциометрически (см. гл. 2.11). ЭДС гальванического элемента равна разности потенциалов электродов его составляющих. Поскольку потенциал стандартного водородного электрода равен нулю, то измеренная величина ЭДС равна величине потенциала редокс-электрода, т.е. редокс-потенциалу редокс-пары при данном соотношении концентраций её компонентов и прочих условиях измерения.

  Рассчитанные параметры протолитических ТКТ (величина скачка титрования, pH в ТЭ) позволяют подобрать наиболее подходящие для обнаружения КТТ (МЭ) кислотно-основные индикаторы.

  Кислотно-основные индикаторы в большинстве случаев представляют собой растворимые сложные органические соединения, способные изменять собственную окраску в зависимости от pH раствора. По химической природе они являются слабыми кислотами или основаниями, частично диссоциирующими в растворе по уравнению

HInd H++Indили IndOH Ind++OH-.

  Цветопеременность кислотно-основных индикаторов ионная теория Оствальда объясняет различием цвета их недиссоциированных молекул и образуемых ионов, а зависимость окраски от pH среды связывает со смещением равновесия в реакции диссоциации с изменением кислотности среды, в результате чего раствор приобретает окраску молекулярной или ионной формы индикатора.

  Более современной хромофорной теорией изменение цвета кислотно-основных индикаторов в зависимости от pH их раствора объясняется происходящей при этом внутри молекулярной перегруппировкой с образованием окрашенных форм. Своё название эта теория получила от названия особых атомных групп (обычно с двойными связями) - хромофоров (от греческого "цветонесущие"), наличию которых в молекулах приписывается окраска органических соединений.

  К хромофорам относят азогруппу -NN-, нитрогруппу -NO2, нитрозогруппу -NO, карбонильную =CO, хиноидную = = = и др. Углублению окраски способствуют другие группы - ауксихромы (от греческого "усиливающие цвет"). К ним относят группы -NH2, -OH и их производные, содержащие радикалы -OCH3, -N(CH3)2, -N(C2H5)и др.

  Трудоемкость и эффективность метода анализа связывают с содержанием определяемого вещества в анализируемом объекте. Если содержание составляет больше 10 мас. долей, %, то вещество называют основой или главными составными частями; 10…0,01 мас. долей, % - примесями или побочными составными частями; меньше 10-2…10-6 мас. долей, % - следовыми примесями.

  Каждым методом анализа выявляется то или иное свойство определяемого вещества, позволяющее его обнаружить и (или) измерить количество. Это свойство называют аналитическим сигналом (АС). Регистрация АС лежит в основе качественного анализа, а на измерении численного значения величины АС базируется количественный анализ. Величина АС, связанная с количественным содержанием определяемого вещества, называется интенсивностью АС. Например, темно-красная окраска раствора, приобретаемая им при добавлении KCNS, является АС, позволяющим идентифицировать ионы Fe+3 при качественном анализе, а интенсивность окраски - интенсивностью АС, измерение которой фотометрическим методом (разновидность физико-химического метода) позволяет установить количество (массу, концентрацию) этих ионов в растворе. Синий осадок турнбулевой сини, обнаруживающий присутствие ионов Fe+2 при добавлении к их раствору раствора K3[Fe(CN)6] - это АС, а объем раствора КМnОс известной концентрацией, пошедший на реакцию с этими ионами, является интенсивностью АС. На практике чаще сталкиваются со случаем одновременной регистрации нескольких АС, принадлежащих разным веществам. АС называют разрешимыми, если они могут быть измерены отдельно. Чем лучше разрешимы АС в условиях данного метода, тем лучше его разрешающая способность. Метод называют селективным, когда каждый компонент анализируемого объекта может быть определен независимо от других. Чем выше разрешающая способность метода, тем выше его селективность. Метод считается специфичным по отношению к одному какому-либо компоненту, если АС, полученный с помощью данного метода, превышает по интенсивности АС всех других компонентов.

Информация о работе Математическая обработка результатов анализа