Автор работы: Пользователь скрыл имя, 24 Февраля 2012 в 23:16, курсовая работа
Целью данной работы является рассмотрение и изучение основных сведений о строении вещества.
Атомно-молекулярные представления о строении вещества развивал М.В. Ломоносов. Он объяснял свойства тел конфигурацией молекул, образующих эти тела, а изменение свойств тел в химических реакциях - изменением конфигураций молекул. Конечно, это еще не была современная теория строения вещества. Как и другие ученые, сторонники механистического мировоззрения, Ломоносов основными характеристиками атомов и молекул считал их массу, скорость, координаты.
ВВЕДЕНИЕ ………………………………………………………………….. 2
ОСНОВНАЯ ЧАСТЬ
1. Развитие учения о строении вещества ………………………………….. 4
2. Многообразие химических систем ………………………………………. 6
3. Неорганические и органические соединения ……………………........... 7
4. Основные сведения о строении вещества ………………………………. 12
ЗАКЛЮЧЕНИЕ ……………………………………………………………… 14
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
Дальнейшее развитие химии связано с работами Лавуазье. С ними вошел в науку закон сохранения массы вещества, в химии стали систематически применяться количественные методы, была выяснена роль кислорода в процессах горения и дыхания, что способствовало опровержению теории флогистона, утверждению атомистических представлений, зарождению органической химии.
К 1850 г. атомно-молекулярная теория стала господствующей и в химии, и в физике. Во многом этому способствовал шведский ученый Якоб Берцелиус. Он построил систему атомных весов всех известных тогда химических элементов. Каждый вид атомов получил «права гражданства» в научной картине мира. Разработанная им электрохимическая теория позволила высказать догадку о силах, действующих между атомами, о распределении электричества на атомах, о неравноценности их «полюсов». Как видим, благодаря химии каждый вид атомов стал приобретать свое лицо. Обратите внимание на классификацию материальных объектов по Берцелиусу (рис. 28). Такая классификация уже не вписывалась в механическую картину мира, в которой основным было представление об элементах мира как о неделимых частицах, обладающих массой. Невидимые, невещественные, невесомые субстанции Берцелиуса подготавливали формирование представления о поле - еще одном виде материи.
Исследования в области органической химии помогли биологам расправиться с «жизненной силой», которая в живом организме должна была руководить образованием органических веществ из неорганических.
Накопление экспериментальных данных о химических и физических свойствах химических элементов позволило Д. И. Менделееву открыть периодический закон (1869 г.). В основу классификации элементов Д. И. Менделеев положил массу их атомов: как и другие сторонники механистического мировоззрения, основным свойством атомов он считал массу. Но картина изменения свойств веществ, созданная Менделеевым, не вписывалась в механическую картину мира.
Как видим, развитие биологии, химии, физики привело к тому, что начался распад механической картины мира.
Механистический детерминизм не подтверждался развитием науки и вызывал возражения философов. Механицизм утверждал покорность ходу событий, невозможность их изменения: зачем бороться с какими-то неприятностями, если они «запрограммированы» миллионы лет тому назад расположением частиц и их скоростями? Подобное мировоззрение не допускало никаких революций, никаких изменений в собственной судьбе или судьбе общества.
В 1781 г. выходит книга И. Канта «Критика чистого разума». В ней автор, пытаясь проникнуть вглубь истории с ее картинами ужасающей жестокости, бесчеловечности, глупости, ставит вопрос: «Как весь этот видимый хаос совместить с понятием прогресса человеческого развития?» - и приходит к выводу, что суетное на одном системном уровне оказывается закономерным на другом, более высоком уровне. Природные задатки человека, его разум развиваются не в индивиде, а в роде. Род людской развивается в направлении прогресса, несмотря на отдельные эгоистические желания. Источником естественного развития Кант считает борьбу. Таким образом, мы видим, что человеческая мысль подошла к диалектической идее о единстве и борьбе противоположностей, которые составляют основу всякого развития.
Закон естественного отбора был открыт Ч. Дарвином под влиянием идеи о причине развития. Как вы помните, этот закон носит статистический характер - случайные изменения на одном системном уровне (на уровне индивидуального развития) проявляются путем естественного отбора на уровне вида. Выход книги Дарвина «Происхождение видов» (1859 г.)* совпал с открытием Дж. Максвеллом статистического закона о распределении молекул по группам, отличающимся различными скоростями. Этот закон определяет вероятность распределения молекул по скоростям, т. е. он допускает случайные события. Согласно представлениям механической картины мира, как вы помните, случайностям в мире не было места. С открытием закона Максвелла в науку входит понятие о динамических и статистических закономерностях. Первые с абсолютной точностью определяют поведение отдельных тел, вторые - определяют вероятность поведения тел, входящих в большие ансамбли. Таким образом, статистические закономерности определяют поведение тел на макроуровне, на микроуровне же поведение микрочастиц продолжали объяснять строгие динамические закономерности, т. е. механистический детерминизм оказался ограниченным «сверху» (на макроуровне).
Утвердить в науке теорию вероятности помогли работы Л. Больцмана, связанные со статистическим обоснованием второго начала термодинамики, установлением связи между энтропией и вероятностью. Все это привело к тому, что механическое движение уже перестало быть господствующим видом движения материи, хотя еще продолжало существовать представление о едином виде материи - веществе.
Этому способствовало также открытие Р. Майером закона сохранения энергии, величайшего закона природы, который стал основой для объяснения явлений природы во всем естествознании, мощным орудием материалистического объяснения мира.
2. Основные сведения о строении вещества
Слово «атом» - греческого происхождения, и переводится оно «неделимый». Принято считать, что первым идею о том, что кажущаяся гладкой и непрерывной материя на самом деле состоит из великого множества мельчайших и потому невидимых частиц, выдвинул древнегреческий философ Демокрит (чей «расцвет», согласно восхитительному по образности выражению классиков, пришелся на V век до н. э.). О жизни Демокрита нам, однако, практически ничего неизвестно, и оригинальные труды этого мыслителя до наших дней не дошли. Поэтому об идеях Демокрита остается судить в основном по цитатам из его работ, которые мы находим у других авторов, прежде всего у Аристотеля.
Логика рассуждений Демокрита, если перевести ее на современный язык, была крайне проста. Представим, говорил он, что у нас есть самый острый в мире нож. Берем первый попавшийся под руку материальный объект и разрезаем его пополам, затем одну из получившихся половинок также разрезаем пополам, затем разрезаем пополам одну из получившихся четвертинок и так далее. Рано или поздно, утверждал он (основываясь, как и все древнегреческие мыслители, прежде всего на философских соображениях), мы получим частицу столь мелкую, что дальнейшему делению на две она не поддается. Это и будет неделимый атом материи.
По представлениям Демокрита атомы были вечными, неизменными и неделимыми. Изменения во Вселенной происходили исключительно из-за изменений в связях между атомами, но не в них самих. Тем самым он тонко обошел давнишний спор древнегреческих философов о том, подвержена ли переменам сама суть видимого мира или все перемены в нем носят чисто внешний характер.
От древнегреческих представлений об атоме на сегодняшний день сохранилось разве что само слово «атом». Теперь мы знаем, что атом состоит из более фундаментальных частиц. Ясно, что между древнегреческой теорией и современными научными исследованиями мало общего: идеи Демокрита не основывались ни на каких наблюдениях или практических опытах. Демокрит, подобно всем натурфилософам античности, просто рассуждал и делал умозрительные заключения относительно природы мира.
Тем не менее, труды Демокрита не остались без признания и в современном мире. На последней греческой монете достоинством 10 драхм (теперь она выведена из обращения и заменена евро) на лицевой стороне изображен портрет Демокрита, а на оборотной -- схематическая модель атома. Я весьма признателен своему другу Гансу фон Байеру, обратившему мое внимание на то, что на монете изображен атом с тремя электронами -- стало быть, это атом лития. Демокрита называли «смеющимся философом» (похоже, он обладал несвойственным другим античным философам чувством юмора). Не потому ли на монете, увековечивающей его память, изображен именно атом лития -- химического элемента, который теперь широко используется для лечения депрессии?
ЗАКЛЮЧЕНИЕ
Идея об атомном строении материи так и оставалась чисто философским умопостроением вплоть до начала XIX века, когда сформировались основы химии как науки. Химики первыми и обнаружили, что многие вещества в процессе реакций распадаются на более простые компоненты. Например, вода распадается на водород и кислород. Однако некоторые вещества -- те же водород и кислород -- разложению на составляющие при помощи химических реакций не поддаются. Такие вещества назвали химическими элементами. К началу XIX века было известно около 30 химических элементов (на момент написания этой статьи их открыто более 110, включая искусственно полученные в лабораторных условиях). Кроме того, было установлено, что в процессе химических реакций количественное соотношение веществ, участвующих в данной реакции, не изменяется. Так, для получения воды неизменно берутся восемь массовых долей кислорода и одна доля водорода.
Первым осмысленную интерпретацию этих фактов предложил Джон Дальтон, чьё имя увековечено в открытом им законе Дальтона. В своих химических опытах он исследовал поведение газов, но этим круг его интересов не ограничивался. В 1808 году он приступил к публикации своего фундаментального двухтомного труда «Новая система химической философии», радикально повлиявшего на дальнейшее развитие химии. В этой работе Дальтон предположил, что осмыслить и интерпретировать последние достижения экспериментальной химии можно только приняв, что каждому химическому элементу в этих опытах соответствует уникальный для него атом, и что именно смешение и объединение в различных пропорциях этих атомов приводит к образованию наблюдаемых в природе химических веществ. Например, вода, по Дальтону, состоит из сочетания двух атомов водорода и одного атома кислорода (общеизвестная формула H2O). Тот факт, что все атомы одного вида неразличимы между собой, удачно объяснял, почему при химических реакциях они всегда обнаруживаются в неизменных пропорциях. Так, в случае с водой, два атома водорода всегда одни и те же, где бы мы ни взяли эту воду, и всегда находятся в одной и той же связи с единственным атомом кислорода.
Для Дальтона, как и для Демокрита, атомы оставались неделимыми. В черновиках и книгах Дальтона мы находим рисунки, где атомы представлены в виде шариков. Однако основное положение его работы -- что каждому химическому элементу соответствует особый тип атома -- легло в основу всей современной химии. Этот факт остается непреложным и теперь, когда мы знаем, что каждый атом сам по себе является сложной структурой и состоит из тяжелого, положительно заряженного ядра и легких, отрицательно заряженных электронов, вращающихся по орбитам вокруг ядра. Достаточно обратиться к сложностям квантовой механики, чтобы понять, что концепция атома не исчерпала себя и в XXI веке.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Ахматов А.С. Молекулярная физика. - М., Знание, 2001.
2. Беклемишев А.В. Методика и организация лабораторных занятий по физике в высшей школе. - М.: Советская наука, 2006.
3. Зайдель А.Н. Ошибки измерений физических величин. - Л.: Наука, 2004.
4. Кикоин А.К., И. К. Кикоин, Молекулярная физика, «Наука», 2000.
5. Ковалёв П.Г. Молекулярная физика, электродинамика. - Ростов: Университетское, 2003.
6. Лабораторные занятия по физике / Под ред. Гольдина Л.Л. - М.: Наука, 2005.
7. Матвеев А. Н., Молекулярная физика, «Высшая школа», 2001.
8. Павленко Ю.Г. Молекулярная физика. - М., 2002.
9. Телеснин Р. В., Молекулярная физика, «Высшая школа», 2003.
ПРИЛОЖЕНИЕ А
- 17 -