Основы гидроочистки топлив

Автор работы: Пользователь скрыл имя, 20 Февраля 2013 в 15:14, реферат

Описание

Цель гидроочистки - улучшение качества продукта или фракции за счет удаления нежелательных примесей, таких, как сера, азот, кислород, смолистые соединения, непредельные углеводороды

Работа состоит из  1 файл

Основы гидроочистки топлив.doc

— 168.50 Кб (Скачать документ)

Высокотемпературные свойства дизельных топлив характеризуются  их склонностью к нагарообразованию  при сгорании топлива и повышенному отложению осадков в двигателе.

Нагарообразование зависит  от химического состава топлив: наличия  в нем смол, непредельных углеводородов, кислородных и сернистых соединений. В результате сгорания сернистых соединений образуются оксиды серы. При работе дизелей на топливах, содержащих смолистые вещества и углеводороды, склонные к окислению, наблюдается повышенное нагарообразование на деталях двигателя и закоксование отверстий распылителей форсунок, резко падает мощность и повышается износ двигателя. Наличие в топливе кислородсодержащих соединений характеризуется содержанием фактических смол. В связи с этим предусматривается ограничение содержания в дизельном топливе смол и непредельных углеводородов.

На количество отложений  в двигателе также влияет коксуемость и зольность дизельных топлив. Зола может вызвать износ деталей двигателей. Повышенное нагарообразование в двигателе наблюдается при сгорании топлива, содержащего органические кислоты. Продукты сгорания также корродируют топливную аппаратуру; аналогичное действие оказывают водорастворимые кислоты и щелочи [1]. Низкотемпературные свойства дизельных топлив характеризуются следующими показателями: вязкостью, температурой помутнения, температурой застывания.

Вязкость дизельного топлива  зависит от углеводородного состава и температуры. Наибольшей вязкостью обладают нафтеновые углеводороды, наименьшей - парафиновые [2]. С понижением температуры значение вязкости возрастает. Вязкость дизельного топлива влияет на степень распыления топлива в камере сгорания и однородность рабочей смеси. Маловязкое топливо распыляется более однородно, чем высоковязкое. Высокая степень распыления и однородность смеси обеспечивают полноту сгорания топлива, сокращают его удельный расход.

Для эксплуатации дизельного топлива большое значение имеет его прокачиваемость, особенно при низких температурах воздуха. Прокачиваемость топлива зависит от вязкости. С увеличением вязкости топлива возрастает сопротивление в топливной системе. При больших потерях напора нарушается нормальная подача топлива к насосу и он начинает работать с перебоями [1, 2].

 

2.2 Параметры гидроочистки

 

Для получения качественных дизельных топлив необходимо исходную дизельную фракцию достаточно полно  освободить от сернистых и смолистых  соединений, непредельных углеводородов и в некоторых случаях частично от ароматических углеводородов.

Указанная цель успешно достигается  при гидроочистке сернистых дизельных  фракций на АКМ или АНМ катализатора при следующих параметрах процесса:

Давление, МПа ...............................................3,0-4,0

Температура, °С

в начале цикла ...............................................350-360

в конце цикла.....у'..........................................400-410

Объемная скорость подачи сырья, ч-1 4-6

Парциальное давление водорода, МПа.........1.8 - 2,0

Для обеспечения  требований к гидроочищенному дизельному топливу по температуре вспышки  и содержанию сероводорода большое  значение имеет правильно подобранный  режим стабилизационной колонны. Например, рекомендуется следующий режим:

Число тарелок..................................... 20

Кратность орошения (массовая) ….. 2:1

Давление в колонне, МПа............... 0,16

Температура, °С

верх колонны................................... 130

низ колонны.......................не ниже 260

на входе сырья в колонну............... 220

 

2.3 Характеристика продуктов

 

Целевым продуктом процесса гидроочистки является стабильное дизельное  топливо. Выход стабильного дизельного топлива в среднем составляет 97% (масс.). Побочными продуктами процесса являются отгон (бензин), углеводородный газ (второй ступени сепарации и стабилизации), сероводород и отдуваемый водородсодержащий газ [3-5].

Ниже приведены состав и свойства отгона:

Плотность, кг/м3 ................................... 750

Фракционный состав: перегоняется при температуре, РС

н. к.......................................................... 60

10% (об.) ............................................... 90

50% (об.) ............................................. 130

90% (об.) ............................................. 160

к. к........................................................ 180

Содержание серы, % (масс.).....0,01-0,05

Октановое число (моторный метод)..... 50

Давление насыщенных паров, МПа ..........Не выше 0,067

Выход отгона зависит  от содержания легких фракций в исходном сырье и составляет 0,5-1,5% (масс.).

Состав углеводородного  газа второй ступени сепарации зависит  как от характеристики сырья и  состава свежего водородсодержащего газа, так и рабочего давления в  сепараторе. Состав углеводородного  газа стабилизации в основном также зависит от состава свежего водородсодержащего газа. Выход газа колеблется в пределах 0,97-2,3% (масс.) на сырье.

Сероводород получается в результате очистки циркуляционного  водородсодержащего и углеводородных газов от сероводорода. Содержание углеводородов в сероводороде, уходящем с установки, не превышает 2% (об.). Выход сероводорода зависит от содержания серы в сырье, глубины очистки сырья и газов и колеблется в пределах 0,5-2,5% (масс.) на сырье. Количество и состав отдуваемого водородсодержащего газа зависит от режима процесса и концентрации водорода в свежем водородсодержащем газе. В качестве «отдува» в топливную сеть сбрасывается очищенный циркуляционный газ.

 

3. Установки гидроочистки

 

На отечественных нефтеперерабатывающих  предприятиях гидроочистку средних дистиллятов проводят преимущественно на установках Л-24-5, Л-24-6, Л-24-7, ЛЧ-24-2000 и ЛК-6У.

 

3.1 Установка Л-24-6

 

3.1.1 Описание установки Л-24-6

Установка Л-24-6 состоит из двух самостоятельных блоков для одновременной переработки двух видов сырья.

Характерной особенностью установки является наличие раздельной системы циркуляции водородсодержащего газа в обоих блоках. Это дает возможность «каскадного» использования его в другом блоке, перерабатывающем сырье, для которого не требуется высокая концентрация водорода в циркуляционном газе.

При гидроочистке в качестве свежего водорода применяется избыточный водородсодержащий газ с установки каталитического риформинга или технический водород со специальных водородных установок.

Смесь сырья  с водородсодержащим газом, нагретую в теплообменнике и печи, подвергают гидроочистке в реакторах над АКМ катализатором. Избыточную теплоту реакции отводят путем введения реакторы так называемого холодного циркуляционного газа.

Из реакторов  газо-продуктовая смесь после  охлаждения поступает сепаратор  высокого давления. Выделившийся газ, очищенный абсорбере раствором  МЭА, вновь возвращается в цикл.

Для поддержания  заданной концентрации водорода на входе блок часть циркуляционного газа отдувается и добавляется соответствующее количество свежего водорода.

Гидрогенизат из сепаратора высокого давления после дросселирования направляется в сепаратор низкого давления и после подогрева в теплообменнике - в стабилизационную колонну.

Дизельное топливо при выходе из колонны разделяется на два потока: один из них, пройдя печь, в виде рециркулята возвращается в колонну, а второй после охлаждения поступает на защелачивание и водную промывку.

Очищенное дизельное топливо выводится с установки. Верхний гродукт колонны стабилизации охлаждается в конденсаторе-холодильнике и разделяется в сепараторе на углеводородный газ, отгон и воду; часть отгона возвращается в колонну на орошение, а другая теть после защелачивания и водной промывки выводится с установки.

На ряде заводов  внедрен узел отдува сероводорода из бензина чищенным углеводородным газом. Углеводородный газ подвергается раздельной очистке от сероводорода раствором МЭА: газ из сепааратора низкого давления очищается в абсорбере под давлением ) 0,5 МПа; газ из бензинового сепаратора очищается от сероводорода при 0,13 МПа, затем используется как топливо для печей.

Насыщенный  раствор МЭА регенерируется в  отгонной колонне, из которой уходит смесь сероводорода и паров воды. После охлаждения в конденсаторе-холодильнике она разделяется в сепараторе. Сероводород выводится с установки для получения серной кислоты или элементарной серы, а вода подается на орошение в отгонную колонну. После отгонной колонны регенерированный раствор охлаждается в теплообменнике, холодильнике и возвращается в цикл. Температурный режим отгонной колонны поддерживается подачей пара в рибойлер.

При потере активности катализатора проводится его газовоздушная  или паровоздушная регенерация.

 

3.1.2 Основное оборудование

Реактор с аксиальным вводом сырья сверху вниз. Корпус реактора изнутри футерован; реактор не имеет  защитного стакана. Диаметр реактора 2600 мм.

Продуктово-сырьевые теплообменники кожухотрубчатые, одноходовые  по трубному пространству, уплотнения сильфонные на плавающей головке. Диаметр корпуса 800 мм.

Трубчатые печи шатрового типа со сварным змеевиком  в зоне огневого нагрева.

Колонные аппараты различного диаметра с желобчатыми  тарелками или насадкой из колец  Рашига.

Холодильники  высокого давления типа «труба в трубе» для готового продукта, установленные на открытой площадке.

Поршневые компрессоры  марки 5ВП-16/70.

 

3.1.3 Экономические показатели

На гидроочистку 1 т сырья расходуется:

Пар, кг..................................................... 42,0

Электроэнергия, МДж ........................... 79,2

Охлаждающая вода, м3 ………………….8,4

Топливо:

мазут, кг................................................. 19,4

газ (при нормальных условиях), м3 …... 4,2

Катализатор, кг .................................... 0,04

Едкий натр, кг....................................... 2,14

Моноэтаноламин, кг ............................ 0,04

Рабочая сила, чел/смена.......................... 10

 

3.2 Установка Г-24/1

 

3.2.1 Описание технологической схемы

Принципиальная технологическая схема установки Г–24/1 представлена на рисунке 1.

Исходное сырье  – прямогонное дизельное топливо  из резервуаров сырьевого парка  забирается насосом Н–1 (Н–4) и подается в тройник смешения потока, где смешивается с циркулирующим водородсодержащим газом (ВСГ), поступающего с выкида циркуляционных компрессоров В – 1(В–2). Расход сырья в тройник смешения регулируется клапаном, установленном на линии подачи сырья от насоса Н–1 (Н–4) в тройник смешения. При понижении расхода сырья до 2,5 м3/ч закрывается клапан-отсекатель 173-1, установленный на сырьевой линии до тройников смешения. Для предотвращения попадания сырья обратным ходом в линию водородсодержащего газа при аварийных остановках компрессоров, циркулирующий ВСГ входит в тройник смешения через обратный клапан (Рис. 1).

Газосырьевая  смесь из тройника смешения поступает в межтрубное пространство теплообменника Т-1/1, где нагревается до температуры 120÷140 °С за счет тепла гидроочищенного топлива, откачиваемого с установки. Из теплообменника Т-1/1 газосырьевая смесь поступает в межтрубное пространство теплообменника Т-2/1, где нагревается до температуры 200-230°С за счет тепла продуктов реакции из реактора Р-1, которые проходят через трубное пространство Т-2/1. Температура нагрева регистрируется.

Окончательный нагрев газосырьевой смеси до температуры реакции 280-4000С осуществляется в трубчатой печи П-1 с горелками беспламенного горения.

 

Рисунок 1 – Технологическая схема установки Г-24/1

 

Газосырьевая смесь проходит вначале через конвекционную часть печи (18 труб), затем нагревается в радиантной части (20 труб).

Температура газосырьевой смеси на выходе из печи П-1 регулируется, клапаном установленным на линии подачи топливного газа к форсункам печи. ПАЗ печи предусматривает отсечение подачи топливного газа клапаном – отсекателем.

Нагретая газосырьевая смесь из печи П-1 поступает в верхнюю часть реактора Р-1, заполненного катализатором. В реакторе под давлением 2,5-4,5 МПа и температуре 280¸4000С на поверхности катализатора происходит гидрирование серо-, азото-, кислородосодержащих органических соединений и непредельных углеводородов. Так как эти реакции протекают с выделением тепла, то температура в реакторах может повышаться. Температура и давление по высоте слоя катализатора, на входе и выходе из реактора регистрируется. По изменению перепада давления в реакторе определяют степень закоксованности катализатора. Допускается перепад давления в реакторе не более 6 кгс/см². Увеличение перепада давления по слою катализатора с одновременным увеличением содержания серы в гидроочищенном топливе указывает на снижение активности катализатора.

Информация о работе Основы гидроочистки топлив