Периодический закон Д.И. Менделеева

Автор работы: Пользователь скрыл имя, 18 Ноября 2010 в 08:54, реферат

Описание

История открытия Периодического закона. Триады Дёберейнера и первые системы элементов. Спираль де Шанкуртуа. Октавы Ньюлендса. Открытие Периодического закона Д. И. Менделеевым.

Работа состоит из  1 файл

химия, реферат.doc

— 156.00 Кб (Скачать документ)

   Периодический закон Д. И. Менделеева — фундаментальный закон, устанавливающий периодическое изменение свойств химических элементов в зависимости от увеличения зарядов ядер их атомов. Открыт Д. И. Менделеевым в марте 1869 года при сопоставлении свойств всех известных в то время элементов и величин их атомных масс. Термин «периодический закон» Менделеев впервые употребил в ноябре 1870, а в октябре 1871 дал окончательную формулировку Периодического закона: «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса»[1]. Графическим (табличным) выражением периодического закона является разработанная Менделеевым периодическая система элементов.

  1. История открытия Периодического закона

   Поиски  основы естественной классификации  химических элементов и их систематизации начались задолго до открытия Периодического закона. Трудности, с которыми сталкивались естествоиспытатели, которые первыми  работали в этой области, были вызваны недостаточностью экспериментальных данных: в начале XIX в. число известных химических элементов было ещё слишком мало, а принятые значения атомных масс многих элементов неточны.

    1. Триады Дёберейнера и первые системы элементов

    В 1829 г. немецкий химик И. Дёберейнер предпринял первую значимую попытку систематизации элементов[2]. Он заметил, что некоторые сходные по своим свойствам элементы можно объединить по три в группы, которые он назвал триадами (рис. 1):  

 
 
 

   Сущность  предложенного закона триад Дёберейнера состояла в том, что атомная масса среднего элемента триады была близка к полусумме (среднему арифметическому) атомных масс двух крайних элементов триады. Несмотря на то, что триады Деберейнера в какой-то мере являются прообразами менделеевских групп, эти представления в целом ещё слишком несовершенны. Отсутствие магния в едином семействе кальция, стронция и бария или кислорода в семействе серы, селена и теллура является результатом искусственного ограничения совокупностей сходных элементов лишь тройственными союзами. Очень показательна в этом смысле неудача И. Деберейнера выделить триаду из четырех близких по своим свойствам элементов: P, As, Sb, Bi. И. Деберейнер отчетливо видел глубокие аналогии в химических свойствах фосфора и мышьяка, сурьмы и висмута, но, заранее ограничив себя поисками триад, он не смог найти верного решения. Спустя полвека Л. Майер скажет, что если бы И. Деберейнер хоть ненадолго отвлекся от своих триад, то он сразу же увидел бы сходство всех этих четырех элементов одновременно.

   Хотя  разбить все известные элементы на триады Дёберейнеру, естественно, не удалось, закон триад явно указывал на наличие взаимосвязи между  атомной массой и свойствами элементов  и их соединений. Все дальнейшие попытки систематизации основывались на размещении элементов в соответствии с их атомными массами.

   Идеи  Дёберейнера были развиты другим немецким химиком Л. Гмелиным, который  показал, что взаимосвязь между  свойствами элементов и их атомными массами значительно сложнее, нежели триады. В 1843 г. Гмелин опубликовал таблицу, в которой химически сходные элементы были расставлены по группам в порядке возрастания соединительных (эквивалентных) весов. Элементы составляли триады, а также тетрады и пентады (группы из четырёх и пяти элементов), причём электроотрицательность элементов в таблице плавно изменялась сверху вниз.

   В 1850-х гг. М. фон Петтенкофер и  Ж. Дюма предложили т. н. дифференциальные системы, направленные на выявление  общих закономерностей в изменении  атомного веса элементов, которые детально разработали немецкие химики А. Штреккер и Г. Чермак.

   В начале 60-х годов XIX в. появилось сразу  несколько работ, которые непосредственно  предшествовали Периодическому закону. 

      1. Спираль де Шанкуртуа

   А. де Шанкуртуа располагал все известные в то время химические элементы в единой последовательности возрастания их атомных масс и полученный ряд наносил на поверхность цилиндра по линии, исходящей из его основания под углом 45° к плоскости основания (т. н. земная спираль)[3]. При развертывании поверхности цилиндра оказывалось, что на вертикальных линиях, параллельных оси цилиндра, находились химические элементы со сходными свойствами. Так, на одну вертикаль попадали литий, натрий, калий; бериллий, магний, кальций; кислород, сера, селен, теллур и т. д. Недостатком спирали де Шанкуртуа было то обстоятельство, что на одной линии с близкими по своей химической природе элементами оказывались при этом и элементы совсем иного химического поведения. В группу щелочных металлов попадал марганец, в группу кислорода и серы — ничего общего с ними не имеющий титан. 

      1. Октавы  Ньюлендса

   Вскоре  после спирали де Шанкуртуа английский учёный Дж. Ньюлендс сделал попытку  сопоставить химические свойства элементов  с их атомными массами[4]. Расположив элементы в порядке возрастания их атомных масс, Ньюлендс заметил, что сходство в свойствах проявляется между каждым восьмым элементом. Найденную закономерность Ньюлендс назвал законом октав по аналогии с семью интервалами музыкальной гаммы. В своей таблице он располагал химические элементы в вертикальные группы по семь элементов в каждой и при этом обнаружил, что (при небольшом изменении порядка некоторых элементов) сходные по химическим свойствам элементы оказываются на одной горизонтальной линии (рис. 2):

   Джон  Ньюлендс, безусловно, первым дал ряд элементов, расположенных в порядке возрастания атомных масс, присвоил химическим элементам соответствующий порядковый номер и заметил систематическое соотношение между этим порядком и физико-химическими свойствами элементов. Он писал, что в такой последовательности повторяются свойства элементов, эквивалентные веса (массы) которых отличаются на 7 единиц, или на значение, кратное 7, т. е. как будто бы восьмой по порядку элемент повторяет свойства первого, как в музыке восьмая нота повторяет первую. Ньюлендс пытался придать этой зависимости, действительно имеющей место для лёгких элементов, всеобщий характер. В его таблице в горизонтальных рядах располагались сходные элементы, однако в том же ряду часто оказывались и элементы совершенно отличные по свойствам. Кроме того, в некоторых ячейках Ньюлендс вынужден был разместить по два элемента; наконец, таблица не содержала свободных мест; в итоге закон октав был принят чрезвычайно скептически. 

      1. Таблицы Одлинга и Мейера

   В 1864 г. У. Одлинг опубликовал таблицу, в которой элементы были размещены согласно их атомным весам и сходству химических свойств, не сопроводив её, однако, какими-либо комментариями.

   В том же 1864 г. появилась первая таблица (рис. 3) немецкого химика Л. Мейера; в неё были включены 28 элементов, размещённые в шесть столбцов согласно их валентностям[5]. Мейер намеренно ограничил число элементов в таблице, чтобы подчеркнуть закономерное (аналогичное триадам Дёберейнера) изменение атомной массы в рядах сходных элементов.

     
 
 
 
 
 
 
 
 

   

   В 1870 г. вышла работа Мейера, содержащая новую таблицу под названием  «Природа элементов как функция  их атомного веса», состоявшая из девяти вертикальных столбцов. Сходные элементы располагались в горизонтальных рядах таблицы; некоторые ячейки Мейер оставил незаполненными. Таблица сопровождалась графиком зависимости атомного объёма элемента от атомного веса, имеющий характерный пилообразный вид, прекрасно иллюстрирующий термин «периодичность», уже предложенный к тому времени Менделеевым. 

   
    1. Открытие  Периодического закона Д. И. Менделеевым.

   В марте 1869 г. русский химик Д. И. Менделеев  представил Русскому химическому обществу сообщение об открытии им Периодического закона химических элементов[6]. В том  же году вышло первое издание менделеевского учебника «Основы химии», в котором была приведена его периодическая таблица. В конце 1870 г. он доложил РХО статью «Естественная система элементов и применение её к указанию свойств неоткрытых элементов», в которой предсказал свойства нескольких не открытых ещё элементов. Для предсказания свойств простых веществ и соединений Менделеев исходил из того, что свойства каждого элемента являются промежуточными между соответствующими свойствами двух соседних элементов в группе периодической таблицы (то есть сверху и снизу) и одновременно двух соседних элементов в периоде (слева и справа).

   В 1871 г. в итоговой статье «Периодическая законность химических элементов» Менделеев  дал следующую формулировку Периодического закона: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел стоят в периодической зависимости от атомного веса». Тогда же Менделеев придал своей периодической таблице вид, ставший классическим (т. н. короткий вариант).

   В отличие от своих предшественников, Менделеев не только составил таблицу  и указал на наличие несомненных закономерностей в численных величинах атомных весов, но и решился назвать эти закономерности общим законом природы. Он взял на себя смелость на основании предположения, что атомная масса предопределяет свойства элемента, изменить принятые атомные веса некоторых элементов и подробно описать свойства неоткрытых ещё элементов.

   Д. И. Менделеев на протяжении многих лет  боролся за признание Периодического закона; его идеи получили признание  только после того, как были открыты  предсказанные Менделеевым элементы: галлий (П. Лекок де Буабодран, 1875), скандий (Л. Нильсон, 1879) и германий (К. Винклер, 1886) — соответственно экаалюминий, экабор и экасилиций. С середины 1880-х годов Периодический закон был окончательно признан в качестве одной из теоретических основ химии. 

   
    1. Развитие  Периодического закона в XX веке.

   В начале XX века Периодическая система  элементов неоднократно видоизменялась для приведения в соответствие с  новейшими научными данными. Д. И. Менделеев  и У. Рамзай пришли к выводу о необходимости образования в таблице нулевой группы элементов, в которую вошли инертные газы[7]. Инертные газы явились, таким образом, элементами, переходными между галогенами и щелочными металлами. Б. Браунер нашёл решение проблемы размещения в таблице редкоземельных элементов, предложив в 1902 г. помещать все РЗЭ в одну ячейку; в предложенном им длинном варианте таблицы шестой период таблицы был длиннее, чем четвёртый и пятый, которые в свою очередь длиннее, чем второй и третий периоды.

   Дальнейшее  развитие Периодического закона было связано с успехами физики: установление делимости атома на основании открытия электрона и радиоактивности в конце концов позволило понять причины периодичности свойств химических элементов и создать теорию Периодической системы.

   Для химии серьёзную проблему составляла необходимость размещения в Периодической  таблице многочисленных продуктов  радиоактивного распада, имеющих близкие  атомные массы, но значительно отличающихся периодами полураспада. Т. Сведберг в 1909 г. доказал, что свинец и неон, полученные в результате радиоактивного распада и отличающиеся по величине атомных масс от «обычных» элементов, химически им полностью тождественны. В 1911 г. Ф. Содди предложил размещать химически неразличимые элементы, имеющие различные атомные массы (изотопы) в одной ячейке таблицы.

   В 1913 г. английский физик Г. Мозли установил, что корень из характеристической частоты  рентгеновского излучения элемента (ν) линейно зависит от целочисленной  величины — атомного номера (Z), который  совпадает с номером элемента в Периодической таблице:

   ν=R(Z-σ)²(1/m²-1/n²), где R — постоянная Ридберга, σ — постоянная экранирования.

   Закон Мозли дал возможность экспериментально определить положение элементов  в Периодической таблице. Атомный  номер, совпадающий, как предположил в 1911 г. голландский физик А. Ван ден Брук, с величиной положительного заряда ядра атома, стал основой классификации химических элементов. В 1920 г. английский физик Дж. Чедвик экспериментально подтвердил гипотезу Ван ден Брука; тем самым был раскрыт физический смысл порядкового номера элемента в Периодической системе. Периодический закон получил современную формулировку: «Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от зарядов ядер атомов элементов».

   В 1921—1923 гг., основываясь на модели атома  Бора-Зоммерфельда, представляющей собой  компромисс между классическими  и квантовыми представлениями, Н. Бор  заложил основы формальной теории Периодической  системы. Причина периодичности свойств элементов, как показал Бор, заключалась в периодическом повторении строения внешнего электронного уровня атома.

   Были  разработаны полудлинный и длинный варианты Периодической таблицы, состоящие из блоков, в которых внешние электронные орбитали атомов одинаковы по орбитальному квантовому числу (в упрощённом представлении — по форме). В химии орбитальные квантовые числа обозначаются буквами s, p, d и f. В s- блок входят щелочные и щёлочноземельные металлы, в d — переходные металлы, в f — лантаноиды и актиноиды, в p — остальные элементы. Термины лантаноиды и актиноиды были предложены профессором ЛГУ С. А. Щукаревым в 1948 году.

   В середине XX века В. М. Клечковский эмпирически  установил и теоретически обосновал  правило, описывающее последовательность заполнения электронных орбиталей атомов по мере роста заряда ядра. В отличие от предыдущих подходов, это правило учитывает взаимодействие между электронами в атоме.

Информация о работе Периодический закон Д.И. Менделеева