Автор работы: Пользователь скрыл имя, 03 Декабря 2012 в 20:56, реферат
Вискозиметр – прибор для измерения вязкости жидкости.
Основные методы вискозиметрии:
Капиллярный метод вискозиметрии.
Метод капиллярной вискозиметрии опирается на закон Пуазейля о вязкой жидкости, описывающий закономерности движения жидкости в капилляре.
Министерство образования Республики Беларусь
Учреждение Образования
«Гродненский
государственный университет
Факультет инновационных технологий машиностроения
Реферат
По дисциплине « Методы исследования машиностроительных материалов».
На тему «Ротационная вискозиметрия».
Выполнил:
Студент 5 курса
заочной платной формы обучения
специальность «Оборудование и
технологии высокоэффективных процессов
обработки материалов»
Шинкевич С.М.
Дом.тел. 52-52-05
Моб.тел. 780-59-93
Проверил:
Эйсымонт Е.И.
Гродно-2012
Вискозиметры
Вязкость - свойство жидкостей
оказывать сопротивление
Кинематическая вязкость равна отношению динамической вязкости среды к ее плотности при той же температуре.
При измерениях часто пользуются также величиной относительной (условной) вязкости, характеризующейся отношением вязкости данной жидкости к вязкости воды при той же температуре.
Вискозиметр – прибор для измерения вязкости
Основные методы вискозиметрии
Капиллярный метод вискозиметрии
Метод капиллярной вискозиметрии опирается на закон Пуазейля о вязкой жидкости, описывающий закономерности движения жидкости в капилляре.
Приведем уравнение
Q – количество жидкости,
протекающей через капилляр
R – радиус капилляра вискозиметра, м
L – длина капилляра капиллярного вискозиметра, м
η – вязкость жидкости, Па·с,
р - разность давлений на концах капилляра вискозиметра, Па.
Отметим, что формула Пуазейля справедлива только для ламинарного потока жидкости, то есть при отсутствии скольжения на границе жидкость – стенка капилляра вискозиметра. Приведенное уравнение используют для определения динамической вязкости. Ниже размещено схематическое изображение капиллярного вискозиметра.
В капиллярном вискозиметре жидкость из одного сосуда под влиянием разности давлений р истекает через капилляр сечения 2R и длины L в другой сосуд. Из рисунка видно, что сосуды имеют во много раз большее поперечное сечение, чем капилляр вискозиметра, и соответственно этому скорость движения жидкости в обоих сосудах в N раз меньше, чем в капилляре вискозиметра. Таким образом не все давление пойдет на преодоление вязкого сопротивления жидкости, очевидно, что часть его будет расходоваться на сообщение жидкости нопределённой кинетической энергии. Следовательно, в уравнение Пуазейля необходимо ввести некоторую поправку на кинетическую энергию, называемую поправкой Хагенбаха:
где h – коэффициент, стремящийся к единице, d –плотность иссдледуемой жидкости.
Вторую поправку условно
назовём поправкой влияния
n – определяется
Следует учитывать, что при измерении вязкости органических жидкостей с большой кинематической вязкостью поправка Хагенбаха незначительна и составляет доли процента. Если же говорить о высокотемпературных вискозиметрах, то вследствие малой кинематической вязкости жидких металлов поправка может достигать 15%.
Метод капиллярной вискозиметрии вполне можно отнести к высокоточному методу вискозиметрии в силу того, что относительная погрешность измерений составляет доли процента, в зависимости от подбора материалов вискозиметра и точности отсчёта времени, а также иных параметров, участвующих в методе капиллярного истечения.
Вибрационный метод
Вибрационный метод
Введём несколько обозначений:
ω – частота колебаний,
τ – время колебания тонкого
упруго закрепленного зонда
Частотно-фазовый вариант вибрационного метода вискозиметрии используется для сильно-вязких жидкостей. В этом случае измеряется частота колебаний зонда вискозиметра, сначала не погруженного (ω0) и затем погруженного (ω) в жидкость при сдвиге фаз .
Для измерения вязкости менее вязких сред, например, металлических расплавов наиболее подходящим является амплитудно-резонансный вариант вибрационного метода вискозиметрии. В этом случае добиваются того, чтобы амплитуда А колебаний была максимальной (путём подбора частот колебаний). Поэтому измеряемым параметром, по которому определяется вязкость становится амплитуда колебаний зонда вискозиметра. В общем случае для малых значений вязкости имеем:
.
Учтем поправки С2(сторонние силы: трения, поверхностного натяжения, лобового сопротивления и т.п.). Имеем конечную формулу метода вибрационной вискозиметрии:
.
Градуировка вискозиметра производится по известным жидкостям (именно определяются постоянные С1,С2).
Метод падающего шарика вискозиметрии
Метод падающего шарика вискозиметрии основан на законе Стокса, согласно которому скорость свободного падения твердого шарика в вязкой неограниченной среде можно описать следующим уравнением:
,
где V – скорость поступательного равномерного движения шарика вискозиметра; r – радиус шарика; g – ускорение свободного падения; d – плотность материала шарика; ро - плотность жидкости.
Необходимо отметить, что уравнение справедливо только в том случае, если скорость падения шарика вискозиметра довольно мала и при этом соблюдается некое эмпирическое соотношение: .
Как и в капиллярном методе вискозиметрии, необходимо учитывать возникающие поправки на конечные размеры цилиндрического сосуда вискозиметра с падающим шариком (высотой L и радиусом R, при условии, если выполняется ). Такие действия приводят к уравнению для определения динамической вязкости жидкости методом падающего шарика вискозиметрии:
.
На основе метода создано
множество моделей
Ротационный метод вискозиметрии
Ротационный метод вискозиметрии заключается в том, что исследуемая жидкость помещается в малый зазор между двумя телами, необходимый для сдвига исследуемой среды. Одно из тел на протяжении всего опыта остаётся неподвижным, другое, называемое ротором ротационного вискозиметра, совершает вращение с постоянной скоростью. Очевидно, что вращательное движение ротора вискозиметра передается к другой поверхности (посредством движения вязкой среды; отсутствие проскальзывания среды у поверхностей тела предполагается, таким образом рассматриваются). Отсюда следует тезис: момент вращения ротора ротационного вискозиметра является мерой вязкости.
Для простоты мы рассмотрим инверсную модель ротационного вискозиметра: вращаться будет внешнее тело, внутренее тело останется неподвижным, ему и будет сообщаться момент вращения. Однако для краткости изложения будем называть внутреннее тело ротором ротационного вискозиметра.
Введём необходимые
R1,L - радиус и длина
ротора ротационного
ω - постоянная угловая скорость вращения внешнего тела;
R2 - радиус вращающегося
резервуара ротационного
η - вязкость исследуемой среды;
M1 - момент вращения, передаваемый через вязкую жидкость, равный
d,l - диаметр и длина упругой нити,
φ - угол, на который закручивается неподвижно закреплённая нить,
G - момент упругости материала нити
При этом крутящий момент M1 ротора ротационного вискозиметра уравновешивается моментом сил упругости нити М2:
.
Заметим вновь, что М1 = М2, откуда после нескольких преобразований относительно η имеем:
,
или ,
где k – постоянная ротационного вискозиметра.
Если рассматривать ту же задачу для ротационного вискозиметра с вращающимся внутренним (ротором вискозиметра) и неподвижным внешним телами, имеем:
.
или
.
В этом случае G – момент, необходимый для поддержания постоянной частоты вращения, (один оборот ротора вискозиметра за τ с).
Заметим, что полученные
отношения справедливы для
1. проводится измерение
момента для жидкостей с
2. экстраполяцией прямых М1 = f(L) и М2 = f(L) к нулевому значению М1 и М2 получают величину ∆L;
3. H=L+∆L.
Эффективную высоту ротационного вискозиметра H подставляют в уравнения.
Ультразвуковой метод вискозиметрии
Сущность метода ультразвуковой вискозиметрии заключается в том, что в исследуемую среду погружают пластинку из магнито-стрикционного материала, называемую зондом вискозиметра на которую намотана катушка, в которой возникают короткие импульсы тока длительностью порядка 20±10 мксек, приводящие к возникновению колебаний. В соответствии с законом сохранения, при колебаниях пластинки в катушке наводится ЭДС, которая убывает со скоростью, зависящей от вязкости среды. Затем, при падении ЭДС до определённого порогового значения, в катушку поступает новый импульс. Вискозиметр определяет вязкость среды по частоте следования импульсов.
Вискозиметры, действие которых
основано на ультразвуковом методе вискозиметрии,
нельзя отнести к классу вискозиметров
с широким диапазоном измерений.
К классу высокотемпературных
Классификация вискозиметров
- по температуре исследуемой
среды различают
- по свойствам исследуемой
вязкой среды различают
- по методу вискозиметрии
различают капиллярные,
- по точности измерений
различают высокоточные
- по области применения различают промышленные, лабораторные, медицинские вискозиметры;
- есть и такой вид
вискозиметра, как полевой вискозиметр,
- вискозиметр примитивной
Вискозиметр вибрационный
Вибрационный вискозиметр в самом простом случае представляет из себя резервуар с вязкой жидкостью и некоторое тело (пластина, шар, цилиндр), называемое зондом вискозиметра, которое производит вынужденные колебания в вязкой среде.