Автор работы: Пользователь скрыл имя, 15 Апреля 2012 в 16:13, курсовая работа
Можно выделить три аспекта синтеза: получение известных веществ по известным методикам, получение известных веществ с определенной заданной морфологией (высокодисперсных порошков, монокристаллов, тонких пленок и др.) и получение новых, ранее неизвестных веществ. В учебном практикуме на начальном этапе реальна постановка задачи синтеза известных веществ по известным методикам, и лишь в самых общих чертах возможно ознакомление с проблемой направленного синтеза веществ.
ТЕОРЕТИЧЕСКИЕ ОСНОВЫ НЕОРГАНИЧЕСКОГО
СИНТЕЗА 3
ИОННЫЙ ОБМЕН 4
1.Периодическая система и её закономерности как
методологическая основа неорганического синтеза. 11
2.Термодинамический анализ реакций синтеза. 11
3.Кинетический анализ реакций синтеза. 14
3. Кинетика и механизм неорганических реакций. 19
4.Основные методы получения веществ металлов и
неметаллов. 23
5.Синтез броматов РЗЭ. 25
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. 27
СПИСОК ЛИТЕРАТУРЫ 28
Во втором варианте комплексообразователь, добавляют к раствору, содержащему смесь разделяемых элементов, и в этом растворе создают условия, благоприятствующие комплексообразованию. Затем производят сорбцию этой смеси комплексов на соответствующем ионите, например, на анионите, если были получены анионные комплексы. При этом лучше всего сорбируются наиболее прочные комплексы, которые имеют наибольшее сродство к смоле.
Чем больше различие констант устойчивости, использованных для разделения комплексов, тем полнее и эффективнее достигаемое разделение в обоих вариантах.
Знание констант устойчивости различного вида комплексов очень полезно также при выборе сорбентов, селективно поглощающих определенные ионы. Известно, что во многих случаях сорбированные ионы образуют комплексные соединения со структурными элементами смолы. Очевидно, что чем более прочные комплексы образуются в фазе смолы, тем большей избирательностью в отношении данного иона будет обладать смола. В литературе имеется немного работ, посвященных изучению прочности комплексов с функциональными группами смолы. Поэтому, на практике при выборе селективного сорбента пользуются данными об устойчивости аналогичных комплексов в растворах.
Комплексообразование в фазе смолы объясняет, например, высокую избирательность карбоксильных и фосфатных катионов в отношении некоторых катионов. Установлен следующий порядок селективности фосфорнокислых смол в отношении катионов: Th4+ >U 4+ >UO22+ Fe3+> редкоземельные элементы > Н+ > Сu2+ >Со2+ >Вa2+ >Na+.
Известно также, что многие ионы образуют весьма прочные хелатные комплексы. Оказалось, что смолы, синтезированные на основе хелатообразующих соединений, обладают весьма высокой избирательностью
по отношению к катионам различных металлов. Поведение хелатных ионитов во многих отношениях сходно с поведением обычных хелатных соединений. В частности, образование хелатов в фазе ионита сильно зависит от рН и поглощение увеличивается с ростом рН раствора.
Аниониты также обладают способностью координационно связывать некоторые катионы, имеющие ярко выраженную тенденцию к образованию анионных комплексов.
Прежде всего, методологической основой неорганического синтеза являются периодический закон и периодическая система с ее закономерностями (правило об уменьшении стабильности высшей степени окисления с ростом атомного номера в главных подгруппах, диагональное сходство, близость атомных радиусов у атомов элементов пятого и шестого периода за счет f-сжатия, способность элементов к диспропорционированию, полимеризации, комплексообразованию и др.), теории кислотно - основных реакций, теории сольволиза и гидратации, учение о механизмах химических реакций (окислительно-
Итак, при термодинамической оценке пригодности для синтеза какой-либо обратимой реакции
необходимо, чтобы было отрицательным изменение энергии Гиббса реакции
где
Если для некоторой реакции К >1, то реакцию можно считать практически необратимой. При значении К >1 ожидается достаточно большой выход продуктов, при К <1 реакция должна протекать в основном "справа налево". Условие К <1 не означает, что реакция синтеза продукта не совершается, в этом случае необходимо вычислять равновесный выход продукта, хотя он может быть и мал.
Уравнение, связывающее изменение энергии Гиббса реакции с константой равновесия
можно записать в виде
Подставив в это уравнение величины R = 8,З1 ·10-3 кДж/К ·моль и Т= 298 К, получим
∆G°298 = -2,3 8,31 ·10-3· 298 ·ln K298 = -5,70 ln K298.
При значении K ~107 реакция практически проходит до конца в прямом направлении, поэтому значение ∆G° ~ |40| кДж/моль (5,7ּln107 = 5,7ּ7 ~ 40) можно считать в первом приближении границей возможности или невозможности самопроизвольного протекания реакции. Если ∆G° реакции при данной температуре отрицательно и по модулю больше, чем 40 кДж/моль, то такая реакция может протекать в прямом направлении не только при стандартных, но и при любых других условиях. Если же ∆G° реакции при данной температуре положительно и больше 40 кДж/моль, то такая реакция протекать самопроизвольно ни при каких условиях не может.
Если значение ∆G° реакции по абсолютному значению невелико, то при изменении условий процесс может протекать в том или ином направлении. В этом случае для решения вопроса о направлении самопроизвольного протекания реакции недостаточно определить знак и величину ∆G°, нужно рассчитать значение ∆G○ реакции с учетом содержания во взятой смеси исходных и образующихся веществ.
С помощью известных констант равновесия химических процессов можно решить два вопроса: 1) предсказать направление самопроизвольной реакции при заданных условиях эксперимента и 2) при известных исходном составе системы и константе равновесия можно рассчитать равновесный состав смеси, максимально возможный "выход" продуктов, что важно для реакций синтеза. Рассмотрим это на примере расчета газовых реакций.
При решении первого вопроса удобно ввести понятие кажущейся константы равновесия Q как отношения концентраций продуктов к концентрациям реагентов, но не обязательно относящееся к равновесным условиям. Для нахождения Q можно взять отношение, например, начальных концентраций компонентов (C°). Так, для реакции
,
Если имеется больше молекул исходных реагентов, чем должно быть при равновесии, то увеличение знаменателя в выражении для Q приводит к тому, что Q <K, и реакция самопроизвольно пойдет в прямом направлении для образования большего количества продукта; при Q >К самопроизвольно протекает обратная реакция, а при Q =К реагенты и продукты находятся в равновесии.
Определение выхода продуктов реакции проводят с использованием таких понятий, как степень диссоциации α, степень превращения γ, число прореагировавших молей ξ.
Степенью диссоциации α называют долю газа, распавшегося на продукты к данному моменту времени. Значение α можно вычислить для известного значения константы равновесия.
Выразив α через Кр (константа равновесия) и давление компонентов P , получим :
Выражение степени диссоциации компонентов раствора.
Предметом химической кинетики являются скорости реакций со всеми влияющими на них факторами и интерпретация скорости реакций на основе их механизма. В этом смысле кинетика отличается от термодинамики, в которой рассматриваются начальное и конечное состояния системы вне зависимости от времени протекания этого превращения. Термодинамика обычно рассматривает системы в состоянии равновесия, т. е. в состоянии, в котором скорости прямой и обратной реакций в обратимом процессе равны, что связывает эти две области химии. Однако обратное не верно: скорость реакции нельзя определить только на основе термодинамических данных. Химическую кинетику можно считать более фундаментальной областью науки, но, к сожалению, часто сложность исследуемых процессов делает применение теории химической кинетики довольно трудным.
Рассмотрим равновесие водород - йод в газовой фазе при высокой температуре:
Н2 + I2 = 2НI
Эта реакция протекает при бимолекулярных столкновениях между молекулами йода и водорода, так что стехиометрическое уравнение в этом случае соответствует истинному механизму взаимодействия. Доказательством правильности такого механизма является то, что скорость образования йодистого водорода, как было показано, пропорциональна как концентрации водорода, так и концентрации йода, т. е.
Это, однако, исключительный случай, так как обычно стехиометрическое уравнение не описывает механизма реакции, как, например, для значительно более сложной реакции водорода с бромом, скорость которой, как было показано, определяется уравнением:
Это можно объяснить следующим механизмом:
Br + Н2 → НВr + Н (медленная)
Н + Вr2 → НВr + Вr (быстрая)
Н + НВr → Н2 + Вr (быстрая)
Следует отметить, что, зная механизм реакции, не всегда можно дать достаточно определенную интерпретацию экспериментально найденным выражениям для скорости. Иногда с экспериментальными данными согласуются несколько возможных механизмов или вновь полученные данные опровергают ранее принятый механизм.
Очевидно, математическую обработку выражений скоростей реакций через концентрации в определенных степенях
Уравнение:1
проводить легче, чем для выражений более сложного типа. Только для выражений скорости типа уравнения (1) приемлемо определение порядка реакции n, причем
Уравнение:2
n = n1+n2+n3+……
Из двух рассмотренных выше примеров реакция водорода с йодом -это реакция второго порядка, причем как по водороду, так и по йоду порядок ее равен единице. Понятие порядка реакции неприменимо к взаимодействию водорода с бромом, так как выражение для скорости этого процесса записано не в соответствующей форме.
Если условия проведения реакции таковы, что одна или более концентраций остаются практически постоянными в течение опыта, то эти концентрации можно включить в константу скорости k. В этом случае реакция будет иметь псевдо –n порядок, где n -сумма показателей степеней концентраций, которые в течение эксперимента изменяются. Обычно эти показатели степени - простые положительные числа, но в зависимости от сложности реакции они могут быть дробными или даже отрицательными.
Порядок реакции, определяемый уравнением (2), часто путают с молекулярностью реакции, которая определяется числом молекул, участвующих в элементарном процессе столкновения. Таким образом, молекулярность - это теоретическое понятие, проистекающее из принятого механизма реакции, тогда как порядок - величина эмпирическая; эти две величины могут различаться. Однако бимолекулярные реакции обычно имеют второй порядок, а тримолекулярные реакции -третий порядок, но обратное утверждение не всегда верно. Реакция, которая иллюстрирует только что сказанное, -это окисление ионов Fe2+ перекисью водорода. Стехиометрическое уравнение ее выглядит так:
2Fe2+· aq + Н2О2 → 2Fe3+ · aq + 2OH-
Показано, что выражение для скорости этой реакции
т. е. реакция имеет второй порядок. Схему протекания реакции лучше всего можно представить следующими стадиями:
Fe2+· aq + Н2О2 Fe3+ • ао+ОН" +ОН
и
Fe2+ · aq + OH- Fe3+· aq + OH-
где
k1= 60 л/моль · сек и k2 = 60 000 л/моль · сек
Так как суммарная реакция состоит из двух последовательных бимолекулярных стадий, то какую -либо молекулярность стехиометрическому уравнению приписать нельзя. Эта схема также иллюстрирует тот факт, что скорость всего процесса определяет самая медленная стадия, так как константа скорости суммарного процесса - это константа скорости первой, более медленной бимолекулярной стадии (т. е. k = k1). Вторую стадию в этой схеме можно использовать как пример реакции с псевдопорядком.
Для объяснения экспериментальных данных по механизмам реакций широко используют явление изотопного замещения. Так, образец, содержащий радиоактивные ионы Fe2+, можно обработать нерадиоактивным образцом, содержащим ионы Fe3+, и количество полученных радиоактивных ионов Fe3+ можно измерить в зависимости от времени. Уравнение Маккея
связывает скорость реакции R (т.е. скорость обмена радиоактивностью) с начальными концентрациями a и b реагентов и измеренными радиоактивностями х и первоначально неактивной формы (в данном случае Fe3+) в моменты времени t и. Поэтому такие реакции являются идеальными для исследования влияния температуры, концентрации и других факторов на скорость реакции.
Таким образом, истинный механизм химических реакций включает мономолекулярные, бимолекулярные или тримолекулярные стадии, по которым реакция идет самопроизвольно при столкновениях между двумя или тремя молекулами. Вероятность одновременного столкновения четырех или более молекул настолько мала, что ею можно пренебречь. Однако можно легко показать, что не все столкновения приводят к химическому взаимодействию. Основными ограничениями, которые лимитируют эффективность столкновений, являются:
а) ориентационные эффекты; очевидно, сложные молекулы могут вступать в реакцию только тогда, когда они соударяются в определенных положениях и в соприкосновение приходят реакционноспособные связи или неподеленные пары электронов. Стерический фактор p показывает, какая часть общего числа соударений приходится на столкновения молекул с такой ориентацией;
б) энергия активации; рассмотрим простую реакцию в газовой фазе
Расстояние H -I в молекуле йодистого водорода равно 1,61 Å и диаметр молекулы равен 3,5 Å. Этот диаметр также должен быть равен расстоянию между двумя атомами водорода или двумя атомами йода в соударяющихся молекулах (удвоенный вандерваальсов радиус; разд. 4.2). Естественно, это расстояние велико по сравнению с расстояниями в молекулах водорода (0,74 Å) и йода (2,67 Å). Следовательно, соударения должны обладать достаточной энергией, чтобы вызвать сжатие молекул НШ, после чего составляющие атомы имели бы возможность подойти друг к другу достаточно близко и вызвать распад этих молекул на водород и йод. Необходимую для этого энергию называют энергией активации реакции, и только те столкновения, которые имеют это минимальное количество энергии, будут эффективными. Часть таких столкновений определяется выражением , где Еa -энергия активации столкновений на один моль. Константа скорости определяется уравнением Аррениуса
Информация о работе Синтез броматов редкоземельных элементов