Синтез броматов редкоземельных элементов

Автор работы: Пользователь скрыл имя, 15 Апреля 2012 в 16:13, курсовая работа

Описание

Можно выделить три аспекта синтеза: получение известных веществ по известным методикам, получение известных веществ с определенной заданной морфологией (высокодисперсных порошков, монокристаллов, тонких пленок и др.) и получение новых, ранее неизвестных веществ. В учебном практикуме на начальном этапе реальна постановка задачи синтеза известных веществ по известным методикам, и лишь в самых общих чертах возможно ознакомление с проблемой направленного синтеза веществ.

Содержание

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ НЕОРГАНИЧЕСКОГО
СИНТЕЗА 3
ИОННЫЙ ОБМЕН 4
1.Периодическая система и её закономерности как
методологическая основа неорганического синтеза. 11
2.Термодинамический анализ реакций синтеза. 11
3.Кинетический анализ реакций синтеза. 14
3. Кинетика и механизм неорганических реакций. 19
4.Основные методы получения веществ металлов и
неметаллов. 23
5.Синтез броматов РЗЭ. 25
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. 27
СПИСОК ЛИТЕРАТУРЫ 28

Работа состоит из  1 файл

курсовая работа (синтезы).doc

— 252.50 Кб (Скачать документ)

Во втором варианте комплексообразователь, добавляют к раствору, содержащему смесь разделяемых элементов, и в этом растворе создают условия, благоприятствующие комплексообразованию. Затем производят сорбцию этой смеси комплексов на соответствующем ионите, например, на анионите, если были получены анионные комплексы. При этом лучше все­го сорбируются наиболее прочные комплексы, которые имеют наибольшее сродство к смоле.

Чем больше различие констант устойчивости, использован­ных для разделения комплексов, тем полнее и эффективнее достигаемое разделение в обоих вариантах.

Знание констант устойчивости различного вида комплексов очень полезно также при выборе сорбентов, селективно погло­щающих определенные ионы. Известно, что во многих случаях сорбированные ионы образуют комплексные соединения со структурными элементами смолы. Очевидно, что чем более прочные комплексы образуются в фазе смолы, тем большей избирательностью в отношении данного иона будет обладать смола. В литературе имеется немного работ, посвященных изучению прочности комплексов с функциональными группами смолы. Поэтому, на практике при выборе селективного сорбента пользуются данными об устойчивости аналогичных комплексов в растворах.

Комплексообразование в фазе смолы объясняет, например, высокую избирательность карбоксильных и фосфатных катионов в отношении некоторых катионов. Установлен следующий порядок селективности фосфорнокислых смол в отношении катионов: Th4+ >U 4+ >UO22+ Fe3+> редкоземельные элементы > Н+ > Сu2+ >Со2+ >Вa2+ >Na+.

Известно также, что многие ионы образуют весьма прочные хелатные комплексы. Оказалось, что смолы, синтезированные на основе хелатообразующих соединений, обладают весьма высокой избирательностью

по отношению к катионам различных металлов. Поведение хелатных ионитов во многих отношениях сходно с поведением обычных хелатных соединений. В частности, образование хелатов в фазе ионита сильно зависит от рН и поглощение увеличивается с ростом рН раствора.

Аниониты также обладают способностью координационно связывать некоторые катионы, имеющие ярко выраженную тенденцию к образованию анионных комплексов.

 

1.Периодическая система и её закономерности как методологическая основа неорганического синтеза.

 

Прежде всего, методологической основой неорганического син­теза являются периодический закон и периодическая система с ее закономерностями (правило об уменьшении стабильности высшей степени окисления с ростом атомного номера в главных подгруппах, диагональное сходство, близость атомных радиусов у атомов эле­ментов пятого и шестого периода за счет f-сжатия, способность эле­ментов к диспропорционированию, полимеризации, комплексообразованию и др.), теории кислотно - основных реакций, теории сольволиза и гидратации, учение о механизмах химических реакций (окислительно-восстановительных, радикальных, обмена лигандов и т.д.), теории химической связи, основные законы химии (при синте­зах, например, закон эквивалентов дополняется положением о воз­можности для многоосновных кислот, многовалентных атомов эле­ментов существования переменного значения кислотно - основного, окислительно-восстановительного эквивалентов).

2.Термодинамический анализ реакций синтеза.

 

Итак, при термодинамической оценке пригодности для синтеза какой-либо обратимой реакции

необходимо, чтобы было отрицательным изменение энергии Гиббса реакции

где

Если для некоторой реакции К >1, то реакцию можно считать практически необратимой. При значении К >1 ожидается достаточно большой выход продуктов, при К <1 реакция должна протекать в ос­новном "справа налево". Условие К <1 не означает, что реакция син­теза продукта не совершается, в этом случае необходимо вычислять равновесный выход продукта, хотя он может быть и мал.

Уравнение, связывающее изменение энергии Гиббса реакции с константой равновесия

можно записать в виде

Подставив в это уравнение величины R = 8,З1 ·10-3 кДж/К ·моль и Т= 298 К, получим

∆G°298 = -2,3  8,31 ·10-3· 298  ·ln K298 = -5,70 ln K298.

При значении K ~107 реакция практически проходит до конца в прямом направлении, поэтому значение ∆G° ~ |40| кДж/моль (5,7ּln107 = 5,7ּ7 ~ 40) можно считать в первом приближении грани­цей возможности или невозможности самопроизвольного протекания реакции. Если ∆G° реакции при данной температуре отрицательно и по модулю больше, чем 40 кДж/моль, то такая реакция может проте­кать в прямом направлении не только при стандартных, но и при лю­бых других условиях. Если же ∆G° реакции при данной температуре положительно и больше 40 кДж/моль, то такая реакция протекать самопроизвольно ни при каких условиях не может.

Если значение ∆G° реакции по абсолютному значению невели­ко, то при изменении условий процесс может протекать в том или ином направлении. В этом случае для решения вопроса о направле­нии самопроизвольного протекания реакции недостаточно опреде­лить знак и величину ∆G°, нужно рассчитать значение  ∆G○ реакции с учетом содержания во взятой смеси исходных и образующихся ве­ществ.

С помощью известных констант равновесия химических про­цессов можно решить два вопроса: 1) предсказать направление са­мопроизвольной реакции при заданных условиях эксперимента и 2) при известных исходном составе системы и константе равновесия можно рассчитать равновесный состав смеси, максимально возмож­ный "выход" продуктов, что важно для реакций синтеза. Рассмотрим это на примере расчета газовых реакций.

При решении первого вопроса удобно ввести понятие кажущей­ся константы равновесия Q как отношения концентраций продуктов к концентрациям реагентов, но не обязательно относящееся к равно­весным условиям. Для нахождения Q можно взять отношение, например, начальных концентраций компонентов (C°). Так, для реакции

  ,    

Если имеется больше молекул исходных реагентов, чем долж­но быть при равновесии, то увеличение знаменателя в выражении для Q приводит к тому, что Q <K, и реакция самопроизвольно пойдет в прямом направлении для образования большего количества про­дукта; при Q >К самопроизвольно протекает обратная реакция, а при Q =К реагенты и продукты находятся в равновесии.

Определение выхода продуктов реакции проводят с использо­ванием таких понятий, как степень диссоциации α, степень превра­щения γ, число прореагировавших молей ξ.

Степенью диссоциации α называют долю газа, распавшегося на продукты к данному моменту времени. Значение α можно вычис­лить для известного значения константы равновесия.

Выразив α через Кр (константа равновесия) и давление компонентов P , получим :

Выражение степени диссоциации компонентов раствора.

3.Кинетический анализ реакций синтеза.

Предметом химической кинетики являются скорости реак­ций со всеми влияющими на них факторами и интерпретация скорости реакций на основе их механизма. В этом смысле кине­тика отличается от термодинамики, в которой рассматриваются начальное и конечное состояния системы вне зависимости от времени протекания этого превращения. Термодинамика обычно рассматривает системы в состоянии равновесия, т. е. в состоя­нии, в котором скорости прямой и обратной реакций в обрати­мом процессе равны, что связывает эти две области химии. Од­нако обратное не верно: скорость реакции нельзя определить только на основе термодинамических данных. Химическую кине­тику можно считать более фундаментальной областью науки, но, к сожалению, часто сложность исследуемых процессов делает применение теории химической кинетики довольно трудным.

Рассмотрим равновесие водород - йод в газовой фазе при вы­сокой температуре:

Н2 + I2 = 2НI

Эта реакция протекает при бимолекулярных столкновениях ме­жду молекулами йода и водорода, так что стехиометрическое уравнение в этом случае соответствует истинному механизму взаимодействия. Доказательством правильности такого меха­низма является то, что скорость образования йодистого водорода, как было показано, пропорциональна как концентрации водорода, так и концентрации йода, т. е.

 

Это, однако, исключительный случай, так как обычно стехиоме­трическое уравнение не описывает механизма реакции, как, на­пример, для значительно более сложной реакции водорода с бромом, скорость которой, как было показано, определяется уравнением:

Это можно объяснить следующим механизмом:

             

Br + Н2 → НВr + Н (медленная)

Н + Вr2 → НВr + Вr (быстрая)

Н + НВr → Н2 + Вr (быстрая)

Следует отметить, что, зная механизм реакции, не всегда можно дать достаточно определенную интерпретацию экспериментально найденным выражениям для скорости. Иногда с экспериментальными данными согласуются несколько возможных механизмов или вновь полу­ченные данные опровергают ранее принятый механизм.

Очевидно, математическую обработку выражений скоростей реакций через концентрации в определенных степенях

Уравнение:1

проводить легче, чем для выражений более сложного типа. Только для выражений скорости типа уравнения (1) приемлемо определение порядка реакции n, причем

Уравнение:2

n = n1+n2+n3+……

Из двух рассмотренных выше примеров реакция водорода с йо­дом -это реакция второго порядка, причем как по водороду, так и по йоду порядок ее равен единице. Понятие порядка реак­ции неприменимо к взаимодействию водорода с бромом, так как выражение для скорости этого процесса записано не в соответ­ствующей форме.

Если условия проведения реакции таковы, что одна или бо­лее концентраций остаются практически постоянными в течение опыта, то эти концентрации можно включить в константу ско­рости k. В этом случае реакция будет иметь псевдо –n поря­док, где n -сумма показателей степеней концентраций, которые в течение эксперимента изменяются. Обычно эти показатели сте­пени - простые положительные числа, но в зависимости от сложности реакции они могут быть дробными или даже отрица­тельными.

Порядок реакции, определяемый уравнением (2), часто путают с молекулярностью реакции, которая определяется чис­лом молекул, участвующих в элементарном процессе столкнове­ния. Таким образом, молекулярность - это теоретическое поня­тие, проистекающее из принятого механизма реакции, тогда как порядок - величина эмпирическая; эти две величины могут раз­личаться. Однако бимолекулярные реакции обычно имеют вто­рой порядок, а тримолекулярные реакции -третий порядок, но обратное утверждение не всегда верно. Реакция, которая иллю­стрирует только что сказанное, -это окисление ионов Fe2+ пе­рекисью водорода. Стехиометрическое уравнение ее выглядит так:

2Fe2+· aq + Н2О2 → 2Fe3+ · aq + 2OH-

Показано, что выражение для скорости этой реакции

т. е. реакция имеет второй порядок. Схему протекания реакции лучше всего можно представить следующими стадиями:

Fe2+· aq + Н2О2 Fe3+ • ао+ОН" +ОН

и

Fe2+ · aq + OH- Fe3+· aq + OH-

где

k1= 60 л/моль · сек  и  k2 = 60 000 л/моль · сек

Так как суммарная реакция состоит из двух последовательных бимолекулярных стадий, то какую -либо молекулярность стехиометрическому уравнению приписать нельзя. Эта схема также иллюстрирует тот факт, что скорость всего процесса определяет самая медленная стадия, так как константа скорости суммар­ного процесса - это константа скорости первой, более медлен­ной бимолекулярной стадии (т. е. k = k1). Вторую стадию в этой схеме можно использовать как пример реакции с псевдопоряд­ком.

Для объяснения экспериментальных данных по механизмам реакций широко используют явление изотопного замещения. Так, образец, содержащий радиоактивные ионы Fe2+, можно обработать нерадиоактивным образцом, содержащим ионы Fe3+, и количество полученных радиоактивных ионов Fe3+ можно из­мерить в зависимости от времени. Уравнение Маккея

связывает скорость реакции R (т.е. скорость обмена радиоак­тивностью) с начальными концентрациями a и b реагентов и из­меренными радиоактивностями х и первоначально неактив­ной формы (в данном случае Fe3+) в моменты времени t и. Поэтому такие реакции являются идеальными для исследования влияния температуры, концентрации и других факторов на ско­рость реакции.

Таким образом, истинный механизм химических реакций включает мономолекулярные, бимолекулярные или тримолекулярные стадии, по которым реакция идет самопроизвольно при столкновениях между двумя или тремя молекулами. Вероят­ность одновременного столкновения четырех или более молекул настолько мала, что ею можно пренебречь. Однако можно легко показать, что не все столкновения приводят к химическому взаимодействию. Основными ограничениями, которые лимити­руют эффективность столкновений, являются:

а) ориентационные эффекты; очевидно, сложные молекулы могут вступать в реакцию только тогда, когда они соударяются в определенных положениях и в соприкосновение приходят реакционноспособные связи или неподеленные пары электронов. Стерический фактор p показывает, какая часть общего числа соударений приходится на столкновения молекул с такой ориен­тацией;

б) энергия активации; рассмотрим простую реакцию в газо­вой фазе

Расстояние H -I в молекуле йодистого водорода равно 1,61 Å и диаметр молекулы равен 3,5 Å. Этот диаметр также должен быть равен расстоянию между двумя атомами водорода или двумя атомами йода в соударяющихся молекулах (удвоенный вандерваальсов радиус; разд. 4.2). Естественно, это расстояние велико по сравнению с расстояниями в молекулах водорода (0,74 Å) и йода (2,67 Å). Следовательно, соударения должны обладать достаточной энергией, чтобы вызвать сжатие молекул НШ, после чего составляющие атомы имели бы возможность подойти друг к другу достаточно близко и вызвать распад этих молекул на водород и йод. Необходимую для этого энергию на­зывают энергией активации реакции, и только те столкновения, которые имеют это минимальное количество энергии, будут эф­фективными. Часть таких столкновений определяется выраже­нием , где Еa -энергия активации столкновений на один моль. Константа скорости определяется уравнением Аррениуса

Информация о работе Синтез броматов редкоземельных элементов