Автор работы: Пользователь скрыл имя, 12 Декабря 2010 в 00:11, реферат
По защитному действию в полимерах стабилизаторы условно делятся на несколько классов, важнейшим из которых является класс антиоксидантов. Антиоксиданты защищают полимеры от разрушения под действием тепла и кислорода. Они подразделяются на две большие группы: первичные (защищают готовое изделие в течение всего срока службы) и вторичные (защищают полимер в процессе переработки в изделие) [3].
При переработке, хранении и эксплуатации полимеры подвергаются действию тепла, света, кислорода, механических нагрузок и другим воздействиям. В результате этого меняются свойства полимеров: уменьшается механическая прочность, эластичность, возникает хрупкость, изменяется цвет, гладкая поверхность становится шероховатой и т.д. Изменения свойств полимеров, которые приводят к ухудшению качества и сокращению срока службы изделий, называют старением. Старение можно предотвратить введением в полимеры небольших количеств химических веществ ― стабилизаторов. При их введении повышается стойкость полимера к внешним воздействиям, расширяются области применения изделий из полимеров и увеличиваются сроки их эксплуатации [1].
По защитному действию в полимерах стабилизаторы условно делятся на несколько классов, важнейшим из которых является класс антиоксидантов. Антиоксиданты защищают полимеры от разрушения под действием тепла и кислорода. Они подразделяются на две большие группы: первичные (защищают готовое изделие в течение всего срока службы) и вторичные (защищают полимер в процессе переработки в изделие) [3].
К первой группе антиоксидантов относят замещённые фенолы и вторичные ароматические амины.
По
химическому строению фенольные
стабилизаторы можно разделить
на производные моноядерных
ОН
(СН3)3С― ―С(СН3)3
СН3
Его получают при алкилировании n-крезола изобутиленом в присутствии кислых катализаторов: ОН
ОН
+ 2(СН3)2СН=СН2→
СН3
[1], стр.160. Этот процесс происходит следующим образом: расплавленный n-крезол и концентрированную серную кислоту (4% от массы n-крезола) загружают в специальный реактор. В реакторе смесь нагревают до 90 0 С и при этой же температуре пропускают изобутилен. Для того чтобы изобутилен успел почти полностью вступить в реакцию, скорость его подачи регулируют. После этого массу веществ, вступивших в реакцию, нейтрализуют содой. Затем органический слой отделяют, промывают водой и разделяют смеси при остаточном давлении 20 мм ртутного столба. Сначала отгоняют не вступивший в реакцию n-крезол, затем 4-метил-2,6-дитретбулфенол, и, наконец, ионол.
Этот стабилизатор практически не влияет на цвет полимера, благодаря чему и используется для защиты очень многих изделий из полимера. Также его применяют для защиты моторных топлив, масел и других нефтепродуктов [4].
В группе бисфенолов важнейшим стабилизатором является 2,2’ –метилен - бис ― высокоэффективный стабилизатор для каучуков, резин, пластмасс, известный под торговым названием бисалкофен БП или антиоксидант 2246:
ОН ОН
(СН3)3С СН2 С(СН3)3
Он образуется при конденсации 4-метил-2-третбутилфенола с формальдегидом в присутствии кислотных катализаторов.
Синтез идёт по схеме:
ОН
2 (СН3)3С
+ СН2О →
СН3
[1], стр.162. Этот процесс происходит следующим образом: в стальной аппарат загружают горячую воду, расплавленный 4-метил-6-третбутилфенол, серную кислоту и эмульсию сульфанола в бензине (для получения хорошо фильтрующихся кристаллов стабилизатора). Полученную массу, перемешивая, нагревают до 80―85 0С. К ней добавляют формалин, после чего начинают выпадать кристаллы стабилизатора. После добавления формалина массу размешивают 2 часа при температуре 80―85 0С, затем охлаждают до 60―65 0С, а серную кислоту нейтрализуют. Полученный продукт отфильтровывают, промывают водой и сушат в вакуум-сушилке.
Один
из важнейших стабилизаторов группы
трисфенолов ― 2,4,6-трис(3,5-дитретбутилен-
НО
Н2С СН2
Н3С СН3
где + =
С(СН3)3 [1], стр.164. Получают его
следующим способом: хлористый метилен
(0―100С), мезитилен и 3,5-дитретбутил-4-
Фенольные антиоксиданты обладают рядом преимуществ: высокоэффективны, не летучи, а также их можно применять с пищевыми и косметическими продуктами.
К группе вторичных ароматических аминов относят ряд важных стабилизаторов, которые эффективно защищают от старения синтетические каучуки, резины, пластмассы и химические волокна. Их применяют в основном в изделиях, окрашенных в тёмные цвета, т.к. они могут вызывать изменение цвета изделия [4].
Одним из важнейших стабилизаторов ароматических аминов является фенил-2-нафтиламин, образующийся при взаимодействии анилина с 2-нафтолом и известный под торговым названием неозон Д:
NH
Армирование 2-нафтола анилином ведут в присутствии соляной кислоты, которую вводят в форме анилиновой соли С6Н5NН2·НСL. Реакция протекает по схеме: NH2
ОН
C6H5NH2·HCl
[1], стр.156. Этот процесс происходит следующим образом: готовят смесь анилина и 2-нафтола, которую загружают в реактор и добавляют небольшое количество солянокислого анилина. Всё это размешивают и нагревают. Реактор оборудован двумя последовательно соединёнными холодильниками ― прямым и обратным. Обратный холодильник охлаждается горячей водой. Сначала в него поступают пары воды и анилина. Через обратный холодильник анилин стекает в реактор, а вода поступает в прямой холодильник, а затем в приёмник. Таким образом, удаляется вода из реакционной массы. Затем температуру реакционной массы постепенно повышают до 250―2600С. По окончании реакции для нейтрализации кислоты добавляют щёлочь и убирают избыточный анилин. После этого расплавленный неозон Д чистят и кристаллизуют.
К вторичным антиоксидантам относят органические соединения трёхвалентного фосфора (фосфиты и фосфониты), металлические соли дитиокарбаматов и дитиосульфатов и тиоэфиры. Они взаимодействуют с гидропероксидами и разрушают их без образования активных радикалов. Образующиеся продукты должны обладать очень низкой реакционной способностью и высокой термической стабильностью [2].
Наиболее эффективными в группе вторичных антиоксидантов являются фосфиты и фосфониты. Они прекрасно подходят для защиты полимеров в процессе переработки в изделие. Однако их недостатком является чувствительность к гидролитической деструкции, которая приводит к образованию кислых соединений, вызывающих коррозию перерабатывающего оборудования.
Защитное действие антиоксидантов этой группы, которое характеризуется величиной индукционного периода на кривой поглощения кислорода при заданной температуре, зависит от количества примененного антиоксиданта [3].
Рисунок
1. Зависимость величины индукционного
периода окисления полимеров
от концентрации ингибитора окисления
(указаны критическая и
Таким
образом, исходя из рисунка, можно говорить
о том, что в полимере существует
критическая концентрация, ниже которой
защитное действие не проявляется, и оптимальная
концентрация, при которой индукционный
период имеет наибольшую длину. Антиоксиданты
этой группы обычно не влияют на длину
индукционного периода, но сильно снижают
скорость присоединения кислорода к полимеру
в главном периоде процесса.
Информация о работе Виды антиоксидантов полимерных материалов