Автор работы: Пользователь скрыл имя, 30 Января 2013 в 20:33, курс лекций
Микропроцессор (МП) — центральное устройство ПК, предназначенное для управления работой всех блоков машины и для выполнения арифметических и логических операций над информацией.
Использование кэш-памяти существенно увеличивает производительность системы. Чем больше размер кэш-памяти, тем выше быстродействие, но эта зависимость нелинейная. Имеет место постепенное уменьшение скорости роста общей производительности компьютера с ростом размера кэш-памяти. Для современных ПК рост производительности, как правило, практически прекращается после 1 Мбайт кэш-памяти L2. Создается кэш-память на основе микросхем статической памяти.
ПРИМЕЧАНИЕ В современных ПК часто применяется и кэш-память между внешними запоминающими устройствами на дисках и оперативной памятью, обычно относящаяся к 3-му уровню, реже, если есть кэш L3 на системной плате, — к 4-му уровню. Кэш-память для ВЗУ создается либо в поле оперативной памяти, либо непосредственно в модуле самого ВЗУ.
Основная память
При рассмотрении структуры основной памяти можно говорить как о физической структуре, то есть об основных ее конструктивных компонентах, так и о логической структуре, то есть о ее различных областях, условно выделенных для организации более удобных режимов их использования и обслуживания.
Физическая структура основной памяти
Упрощенная структурная схема модуля основной памяти при матричной его организации представлена на рис. 11.1.
При матричной организации адрес ячейки, поступающий в регистр адреса, например по 20-разрядным кодовым шинам адреса, делится на две 10-разрядные части, поступающие, соответственно, в регистр адреса X и регистр адреса Y. Из этих регистров коды полуадресов поступают в дешифратор X и дешифратор Y, каждый из которых в соответствии с полученным адресом выбирает одну из 1024 шин. По выбранным шинам подаются сигналы записи-считывания в ячейку памяти, находящуюся на пересечении этих шин. Таким образом адресуется 106 (точнее, 10242) ячеек.
Считываемая или записываемая информация поступает в регистр данных, непосредственно связанный с кодовыми шинами данных. Управляющие сигналы, определяющие, какую операцию следует выполнить, поступают по кодовым шинам инструкций. Куб памяти содержит набор запоминающих элементов — собственно ячеек памяти.
Рис. 11.1. Структурная схема модуля основной памяти
Основная память (ОП) содержит оперативное (RAM — Random Access Memory) и постоянное (ROM — Read Only Memory) запоминающие устройства.
Оперативное запоминающее устройство (ОЗУ) предназначено для хранения информации (программ и данных), непосредственно участвующей в вычислительном процессе в текущий интервал времени. ОЗУ — энергозависимая память: при отключении напряжения питания информация, хранящаяся в ней, теряется.
Основу ОЗУ составляют микросхемы динамической памяти DRAM. Это большие интегральные схемы, содержащие матрицы полупроводниковых запоминающих элементов — полупроводниковых конденсаторов. Наличие заряда в конденсаторе обычно означает «1», отсутствие заряда — «О». Конструктивно элементы оперативной памяти выполняются в виде отдельных модулей памяти — небольших плат с напаянными на них одной или, чаще, несколькими микросхемами. Эти модули вставляются в разъемы — слоты на системной плате. На материнской плате может быть несколько групп разъемов — банков — для установки модулей памяти; в один банк можно ставить лишь блоки одинаковой емкости, например, только по 16 Мбайт или только по 64 Мбайт; блоки разной емкости можно устанавливать только в разные банки.
Модули памяти характеризуются конструктивом, емкостью, временем обращения и надежностью работы. Важным параметром модуля памяти является его
надежность и устойчивость к возможным сбоям. Надежность работы современных модулей памяти весьма высокая — среднее время наработки на отказ составляет сотни тысяч часов, но тем не менее предпринимаются и дополнительные меры повышения надежности. Одним из направлений, повышающих надежность функционирования подсистемы памяти, является использование специальных схем контроля и избыточного кодирования информации.
Модули памяти бывают с контролем четности (parity) и без контроля четности (nоn parity) хранимых битов данных. Контроль четности позволяет лишь обнаружить ошибку и прервать исполнение выполняемой программы. Существуют и более дорогие модули памяти с автоматической коррекцией ошибок — ЕСС-память, использующие специальные корректирующие коды с исправлением ошибок.
ПРИМЕЧАНИЕ Некоторые недобросовестные фирмы (китайские, например) с целью повышения конкурентоспособности своих изделий в глазах неопытных покупателей ставят в модули памяти специальный имитатор четности — микросхему-сумматор, выдающую при считывании ячейки всегда правильный бит четности. В этом случае никакого контроля нет, а лишь имитируется его выполнение. Надо сказать, что эта имитация иногда бывает полезной, так как существуют системные платы, требующие для своей корректной работы присутствия бита контроля четности.
Существуют следующие типы модулей оперативной памяти: DIP; SIP; SIPP; SIMM; DIMM; RIMM. Рассмотрим их подробнее.
DIP, SIP и SIPP
DIP (Dual In-line Package — корпус с двухрядным расположением выводов) — одиночная микросхема памяти, сейчас используется только в составе укрупненных модулей (в составе модулей SIMM, например). SIP (Single In-line Package — корпус с однорядным расположением выводов) — микросхема с одним рядом выводов, устанавливаемая вертикально. SIPP (Single In-line Pinned Package — корпус с однорядным расположением проволочных выводов) — 30-контактный (штырьковый) модуль. Модули SIP и SIPP сейчас практически не применяются.
SIMM
SIMM (Single In-line Memory Module) представляют собой печатную плату с односторонним краевым разъемом типа слот и установленными на ней совместимыми микросхемами памяти типа DIP. Микросхемы SIMM бывают двух разных типов: короткие, на 30 контактов (длина 75 мм), и длинные, на 72 контакта (длина 100 мм). Модули SIMM имеют емкость 256 Кбайт, 1, 4, 8, 16, 32 и 64 Мбайт. Модули SIMM выпускаются с контролем и без контроля четности и с эмуляцией контроля четности. Память SIMM отличается также низким быстродействием — обычно она имеет время обращения 60 и 70 нс. Сейчас такое время обращения считается нежелательным, поэтому модули SIMM встречаются только в устаревших ПК.
DIMM
DIMM (Dual In-line Memory Module) — более современные модули, имеющие 168-контактные разъемы (длина модуля 130 мм); могут устанавливаться только на те типы системных плат, которые имеют соответствующие разъемы. Появление DIMM стимулировалось выпуском процессоров Pentium, имеющих 64-битовую шину данных. Необходимое число модулей памяти для заполнения шины называется банком памяти. В случае 64-разрядной шины для этого требуется два 32-битовых 72-контактных модуля SIMM или один 64-битовый модуль DIMM, имеющий 168 контактов. Модуль DIMM может иметь разрядность 64 бит (без контроля четности), 72 бит (с контролем четности) и 80 бит (память ЕСС). Емкость модулей DIMM: 16, 32, 64, 128, 256 и 512 Мбайт. Время обращения, характерное для современных модулей DIMM, работающих на частоте 100 и 133 МГц (модули РС100, РС133), лежит в пределах 6-10 нс.
RIMM
RIMM (Rambus In-line Memory Module) — новейший тип оперативной памяти. Появление технологии Direct Rambus DRAM потребовало нового конструктивного исполнения для модулей памяти. Микросхемы Direct RDRAM собираются в модули RIMM, внешне подобные стандартным DIMM, что, кстати, и нашло отражение в названии модулей нового конструктива. На плате модуля RIMM может быть до 16 микросхем памяти Direct RDRAM, установленных по восемь штук с каждой стороны платы. Модули RIMM могут быть использованы на системных платах с форм-фактором ATX, BIOS и чипсеты которых согласованы с данным типом памяти. Среди микросхем фирмы Intel это чипсеты 1820, i840, i850 и их модификации. На системной плате предусматривается до четырех разъемов под данные модули. Необходимо отметить, что модули RIMM требуют интенсивного охлаждения. Это связано со значительным энергопотреблением и, соответственно, тепловыделением, что обусловлено высоким быстродействием данных модулей памяти (время обращения 5 нс и ниже). Хотя внешне модули RIMM напоминают модули DIMM, они имеют меньшее число контактов и с обеих сторон закрыты специальными металлическими экранами, которые защищают модули RIMM, работающие на больших частотах, экранируя их чувствительные электронные схемы от внешних электромагнитных наводок. В настоящее время спецификации определяют три типа модулей, отличающихся рабочими частотами и пропускной способностью. Обозначаются они RIMM PC800, RIMM РС700, RIMM PC600. Наиболее быстродействующими являются модули RIMM РС800, работающие с чипсетом i850 на внешней тактовой частоте 400 МГц и имеющие пропускную способность 1,6 Гбайт/с. Модули RIMM PC600 и RIMM РС700 предназначены для работы на повышенных частотах шины памяти, например, на частоте 133 МГц, поддерживаемой современными чипсетами.
Различают следующие типы оперативной памяти: FPM DRAM; RAM EDO; BEDO DRAM; SDRAM; DDR SDRAM; DRDRAM и т. д.
FPM DRAM
FPM DRAM (Fast Page Mode DRAM) — динамическая память с быстрым страничным доступом, активно используется с микропроцессорами 80386 и 80486. Память со страничным доступом отличается от обычной динамической памяти тем, что после выбора строки матрицы и удержания RAS допускает многократную установку адреса столбца, стробируемого CAS. Это позволяет ускорить блочные передачи, когда весь блок данных или его часть находятся внутри одной строки матрицы, называемой в этой системе страницей. Существуют две разновидности FPM DRAM, различающиеся временем обращения: 60 и 70 нс. Из-за своей медлительности они не эффективны в системах с процессорами уровня Pentium II. Модули FPM DRAM в основном выпускались в конструктиве SIMM.
RAM EDO
RAM EDO (EDO — Extended Data Out, расширенное время удержания (доступности) данных на выходе), фактически, представляют собой обычные микросхемы FPM, к которым добавлен набор регистров-«защелок», благодаря чему данные на выходе могут удерживаться в течение следующего запроса к микросхеме. При страничном обмене такие микросхемы работают в режиме простого конвейера: удерживают на выходе содержимое последней выбранной ячейки, в то время как на их входы уже подается адрес следующей выбираемой ячейки. Это позволяет примерно на 15 % по сравнению с FPM ускорить процесс считывания последовательных массивов данных. При случайной адресации такая память никакого выигрыша в быстродействии не дает. Память типа RAM EDO имеет минимальное время обращения 45 нс и максимальную скорость передачи данных по каналу «процессор—память» 264 Мбайт/с. Модули RAM EDO выпускались в конструктивах SIMM и DIMM.
BEDO DRAM
BEDO DRAM (Burst Extended Data Output, EDO с блочным доступом). Современные процессоры благодаря внутреннему и внешнему кэшированию команд и данных обмениваются с основной памятью преимущественно блоками слов максимальной длины. Этот вид памяти позволяет обрабатывать данные пакетно (блоками) так, что данные считываются блоками за один такт. В случае памяти BEDO отпадает необходимость постоянной подачи последовательных адресов на входы микросхем с соблюдением необходимых временных задержек — достаточно стробировать переход к очередному слову блока. Этот метод позволяет BEDO DRAM работать очень быстро. Память BEDO DRAM поддерживают некоторые чипсеты фирм VIA Apollo (580VP, 590VP, 680VP) и Intel (i480TX и т. д.) на частоте шины не выше 66 МГц. Активную конкуренцию этому виду памяти составляет память SDRAM, которая постепенно ее вытесняет. BEDO DRAM представлена модулями и SIMM и DIMM.
SDRAM
SDRAM (Synchronous DRAM — синхронная динамическая память), память с синхронным доступом, увеличивает производительность системы за счет синхронизации скорости работы ОЗУ со скоростью работы шины процессора. SDRAM также осуществляет конвейерную обработку информации, выполняется внутреннее разделение массива памяти на два независимых банка, что позволяет совмещать выборку из одного банка с установкой адреса в другом банке. SDRAM также поддерживает блочный обмен. Основная выгода от использования SDRAM состоит в поддержке последовательного доступа в синхронном режиме, где удается исключить дополнительные такты ожидания. Память SDRAM может устойчиво функционировать на высоких частотах: выпускаются модули, рассчитанные на работу при частотах 100 МГц (спецификация РС100) и 133 МГц (РС133). В начале 2000 года фирма Samsung объявила о выпуске новых интегральных микросхем (ИС) SDRAM с рабочей частотой 266 МГц. Время обращения к данным в этой памяти зависит от внутренней тактовой частоты МП и достигает 5-10 нс, максимальная скорость передачи данных «процессор—память» при частоте шины 100 МГц составляет 800 Мбайт/с (фактически, равна скорости передачи данных по каналу «процессор—кэш»). Память SDRAM дает общее увеличение производительности ПК примерно на 25 %. Правда, эта цифра относится к работе ПК без кэш-памяти — при наличии мощной кэш-памяти выигрыш в производительности может составить всего несколько процентов. SDRAM обычно выпускается в 168-контактных модулях типа DIMM и имеет 64-разрядную шину данных. Используется не только в качестве оперативной памяти, но и как память видеоадаптеров, где она полезна при просмотре живого видео и при работе с трехмерной графикой.
DDR SDRAM
DDR SDRAM (Double Data Rate SDRAM - SDRAM II). Вариант памяти SDRAM, осуществляющий передачу информации по обоим фронтам тактового сигнала. Это позволяет удвоить пропускную способность по сравнению с традиционной памятью SDRAM (до 1,6 Гбайт/с при частоте шины 100 МГц). Кроме того, DDR SDRAM может работать на более высокой частоте — в начале 2000 года были выпущены 64-мегабитовые модули DDR SDRAM с частотой 143, 166 и 183 МГц. Модули DDR DRAM конструктивно совместимы с традиционными 168-контактными DIMM. Используется DDR-память не только в качестве элементов оперативной памяти, но и в высокопроизводительных видеоадаптерах.
В 2003 году появилась память DDR второго поколения DDR SDRAM II (или DDR II), в которой путем использования двухканального интерфейса, специальной фазовой автоподстройки и других нововведений удалось увеличить пропускную способность памяти в два раза. Кроме того, частота передачи данных в памяти DDR II также увеличена и в 2005 году достигла 800 МГц. Увеличению рабочей частоты DDR II способствует то, что напряжение электропитания схем снижено с 2,5 до 1,8 В.
DRDRAM
DRDRAM (Direct Rambus DRAM — динамическая память с прямой шиной для RAM). DRDRAM — перспективный тип оперативной памяти, позволивший значительно увеличить производительность компьютеров. Высокое быстродействие памяти Direct RDRAM достигается рядом особенностей, не встречающихся в других типах. В частности, применением собственной двухбайтовой шины Rambus с частотой 800 МГц, обеспечивающей пиковую пропускную способность до 1,6 Гбайт/с. Контроллер памяти Direct RDRAM управляет шиной Rambus и обеспечивает преобразование ее протокола с частотой 800 МГц в стандартный 64-разрядный интерфейс с частотой шины до 200 МГц. Фирма Intel выпустила чипсеты i820, i840, i850 с поддержкой DRDRAM. Модули Direct RDRAM — RIMM внешне подобны модулям DIMM.
В маркировке SDRAM и DRDRAM (часто именуемой также RDRAM) обычно указывается рабочая частота модуля в виде, например, обозначения РС150, что для SDRAM означает пиковую пропускную способность 1200 Мбайт/с — такую же, как у РС600 для DRDRAM (ввиду малоразрядности шины последней). Правда, многие чипсеты (например, i850) поддерживают двухканальный обмен с памятью DRDRAM, что удваивает ее пропускную способность.
Для DDRDRAM указание РС150 подразумевало бы пропускную способность 2400 Мбайт/с — в 2 раза большую, чем для SDRAM (ввиду передачи информации по двум фронтам импульса). Но для DDR принято в маркировке около букв PC указывать не рабочую частоту, а саму пропускную способность. То есть маркировка РС2400 для DDRDRAM означает DDR-память с рабочей частотой 150 МГц (возможное обозначение такой памяти DDR150).
Увеличение разрядности и частоты шины Rambus, обещанное в ближайшие годы, делает память DRDRAM, несмотря на ее высокую стоимость, весьма перспективной. Так, компания Samsung выпустила 64-битовую память (с четырьмя 16-битовыми каналами) и пропускной способностью 8500 Мбайт/с (РС1066) и 9600 Мбайт/с (РС1200). Ближайшие перспективы DDRDRAM ненамного скромнее: фирма Hynix Semiconducta анонсировала 512-мегабитовые чипы DDR, изготовленные по 0,10 мкм-технологии с рабочими частотами 266, 333 и 400 МГц (скорость обмена до 6400 Мбайт/с).