Технология беспроводной передачи информации на примере технологии Bluetooth

Автор работы: Пользователь скрыл имя, 01 Февраля 2013 в 10:22, курсовая работа

Описание

Глава 1. Концепция и технические принципы беспроводной передачи информации
Глава 2. Технология Bluetooth – как способ беспроводной передачи информации
Глава 3. Некоторые аспекты практического применения технология Bluetooth
Глава 4. Анализ беспроводных технологий и перспективы развития технологии Bluetooth

Содержание

Введение………………………………………………………………………
Стр.3.
Глава 1. Концепция и технические принципы беспроводной передачи информации…………………………………………………………………...

Стр.5.
1.1. Концепция беспроводной передачи информации……………………….
Стр.5.
1.2. Технические принципы беспроводной передачи информации………...
Стр.7.
Глава 2. Технология Bluetooth – как способ беспроводной передачи информации…………………………………………………………………...

Стр.9.
2.1. Концепция и основные положения технологии Bluetooth……………...
Стр.9.
2.2. Технические аспекты установки соединения между Bluetooth устройствами………………………………………………………………….……….

Стр.10.
2.3. Набор базовых протоколов, используемых в Bluetooth для передачи различных типов данных………………………………………………………

Стр.13.
Глава 3. Некоторые аспекты практического применения технология Bluetooth………………………………………………………………………..

Стр.16.
3.1. Основные направления использования технологии Bluetooth…………
Стр.16.
3.2. Беспроводная технология Bluetooth в Шведском Национальном музее………………………………………………………………………………..

Стр.20.
Глава 4. Анализ беспроводных технологий и перспективы развития технологии Bluetooth…………………………………………………………

Стр.21.
4.1. Анализ аналогичных технологий. А так же их преимущества и недостатки по отношению к Bluetooth……………………………………………...

Стр.21.
4.2. Перспективы развития технологии Bluetooth…………………………...
Стр.23.
Заключение…………………………………………………………………….
Стр.27.
Список литературы…………………………………………………………..
Стр.29.

Работа состоит из  1 файл

блютуз.doc

— 393.00 Кб (Скачать документ)

Limited discoverable mode. В этом режиме находятся устройства которые могут отвечать на запросы только ограниченное время, или должны отвечать только при соблюдении определённых условий.

Non-discoverable mode. Находящиеся в этом режиме устройства, как видно из названия режима, не отвечают на новые запросы.

Но это ещё не всё. Даже если удаётся  обнаружить устройство, оно может  быть в connectable mode или в non-connectable mode. В non-connectable mode устройство не позволяет настроить некоторые важные параметры соединения, и, таким образом, оно хоть и может быть обнаружено, обмениваться данными с ним не удастся. Если устройство находится в connectable mode, то на этом этапе Bluetooth устройства договариваются между собой об используемом диапазоне частот, размере страниц, количестве и порядке hop’ов, и других физических параметрах соединения.

Если процесс обнаружения устройств  прошёл нормально, то новое Bluetooth устройство получает набор адресов доступных Bluetooth устройств, и за этим следует device name discovery, когда новое устройство выясняет имена всех доступных Bluetooth устройств из списка. Каждое Bluetooth устройство должно иметь свой глобально уникальный адрес (вроде как MAC-адреса у сетевых плат), но на уровне пользователя обычно используется не этот адрес, а имя устройства, которое может быть любым, и ему не обязательно быть глобально уникальным. Имя Bluetooth устройства может быть длиной до 248 байт, и использовать кодовую страницу в соответствии с Unicode UTF-8 (при использовании UCS-2, имя может быть укорочено до 82 символов). Спецификация предусматривает, что Bluetooth устройства не обязаны принимать больше первых 40 символов имени другого Bluetooth устройства. Если же Bluetooth устройство обладает экраном ограниченного размера, и ограниченной вычислительной мощью, то количество символов, которое оно примет может быть уменьшено до 20.

Ещё одной из важнейших особенностей Bluetooth является автоматическое подключение Bluetooth устройств к службам, предоставляемым другими Bluetooth устройствами. Поэтому, после того как имеется список имён и адресов, выполняется service discovery, поиск доступных услуг, предоставляемых доступными устройствами. Получение или предоставление, каких либо услуг - это то, ради чего всё собственно и затевалось, поэтому для поиска возможных услуг используется специальный протокол, называемый, как несложно догадаться, Service Discovery Protocol (SDP), более подробно он будет описан ниже.

Естественно, Bluetooth не могла обойтись без такой  важной вещи, как технология защиты передаваемых данных, встроенной в сам протокол. В зависимости от выполняемых задач, предусмотрено три режима защиты в которых может находится устройство.

Security mode 1 (non secure), устройство не может самостоятельно инициировать защитные процедуры.

Security mode 2 (service level enforced security), устройство не инициирует защитные процедуры пока не установлено и не настроено соединение. После того как соединение установлено, процедуры защиты обязательны, и определяются типом и требованиями используемых служб.

Security mode 3 (link level enforced security), защитные процедуры инициируются в процессе установления и настройки соединения. Если удалённое устройство не может пройти требований защиты, то соединение не устанавливается.

Естественно, что Security mode 3 и 2 могут использоваться вместе, то есть сначала устанавливается защищённое соединение, а потом оно ещё защищается в соответствии с требованиями и возможностями конкретной службы.

Основой системы безопасности Bluetooth, используемой в Security mode 3, является понятие сеансового ключа, или Bond. Сеансовый ключ генерится в процессе соединения двух устройств, и используется для идентификации и шифрования передаваемых данных. Для генерации ключа могут использоваться самые различные составляющие, от заранее известных обоим устройствам значений, до физических адресов устройств. Комбинируя защиту на уровне соединения с защитой на уровне приложений (где может использоваться абсолютно любая из существующая на сегодня систем защиты данных) можно создавать достаточно надёжно защищённые соединения. Но всё равно, очевидной слабостью Bluetooth соединений с точки зрения построения защищённых соединений остаётся возможность перехвата трафика, причём для этого даже не придётся использовать, какое либо специфическое оборудование. Впрочем, эта проблема не нова, и в настоящее время часто приходится использовать открытые сети, вроде Интернет, где возможен перехват трафика, для передачи закрытых данных. Противодействие "брони и снаряда" продолжается.

 

2.3. Набор базовых протоколов, используемых в Bluetooth для передачи  различных типов данных. После того, как соединение установлено, его можно использовать для самых различных целей. Возможно это благодаря набору базовых протоколов, используемых в Bluetooth для передачи различных типов данных. С упрощённой схемой их зависимости друг от друга можно ознакомиться на приведённой ниже схеме.

 

 

В основе всего, как видно из схемы, лежит baseband protocol. Baseband protocol определяется физическими характеристиками радиоканала, и в самых общих чертах на его особенностях я останавливался в начале статьи. На более высоких уровнях стоит остановиться немного поподробнее сейчас.

Logical Link Control and Adaptation Layer Protocol или L2CAP, является базовым протоколом передачи данных для Bluetooth. Как описано выше, baseband protocol позволяет устанавливать синхронные (Synchronous Connection-Oriented, или SCO) и асинхронные (Asynchronous Connection-Less, или ACL) соединения. L2CAP, как видно из схемы, работает только с асинхронными соединениями. Так же из схемы видно, что многие протоколы и службы более высокого уровня используют L2CAP как транспортный протокол. В полном соответствии с идеологией Bluetooth L2CAP является простым протоколом, который предъявляет минимум требований к вычислительным мощностям и размеру оперативной памяти устройств, которые его используют. Основные особенности, заложенные в L2CAP таковы:

Protocol Multiplexing. L2CAP является транспортом для многих протоколов и служб, поэтому он обеспечивает возможность разобраться, к какому протоколу или службе относится переданный пакет, что обеспечивает доставку пакета именно тому, кому его ждёт.

Segmentation and Reassembly. Максимальной длиной пакета для L2CAP является 64 килобайта, для baseband protocol это число ещё меньше, всего 341 байт. Однако, иногда требуется передача больших пакетов, поэтому L2CAP обеспечивает разбивку большого пакета на несколько более мелких, и последующую сборку первоначального пакета.

Quality of Service. L2CAP поддерживает QoS, что позволяет Bluetooth устройствам отслеживать свободные ресурсы соединения и не позволять, что бы ширина канала или временные задержки для отслеживаемой службы опускались ниже критических значений.

Groups. L2CAP поддерживает адресацию не одному клиенту, а сразу целой группе.

Кроме L2CAP непосредственно с baseband protocol работают Link Management Protocol, или LMP, и Voice каналы, используемые для передачи аудиоинформации в синхронном режиме.

LMP является служебным протоколом, используемым для управления  каналом, и не использующимся для передачи данных. Сообщения LMP используются для настройки физических характеристик канала, для служб безопасности на уровне физического канала (security mode 3), и тому подобных вещей. LMP имеет более высокий приоритет чем остальные протоколы (например, L2CAP), поэтому если канал занят чем-либо другим, то при необходимости передать LMP сообщение он немедленно освобождается.

Voice, или Bluetooth Audio. Это одна из служб Bluetooth, которая использует синхронное соединение. Как уже говорилось, одновременно может передаваться до 3 аудиоканалов. Характеристики звуковых потоков могут различаться, и во многом определяются используемым приложением. Максимально звуковой поток может передаваться с точностью в 16 бит при sampling rate 48 кГц. К сожалению, характеристики Bluetooth не позволяют передавать видеоинформацию с нормальным качеством.

Одним из важнейших протоколов Bluetooth, который использует L2CAP в качестве транспортного протокола, является Service Discovery Protocol, или SDP, уже упоминавшийся в статье. Сейчас никто не сможет представить все возможные способы использования Bluetooth устройств, поэтому при разработке этого протокола пытались учесть как можно больше ситуаций, которые могут возникнуть. Сейчас действует версия 1.0 этого протокола, и основные особенности, которыми он располагает, в настоящее время таковы:

1. SDP должен позволять поиск служб  по специальным атрибутам этих  служб.  
Например, если имеется несколько принтеров, доступных через Bluetooth, то клиент должен иметь возможность найти именно тот принтер, который ему нужен.

2. SDP должен позволять клиенту  искать службы по классу. Если  немного переделать предыдущий пример, то если клиенту понадобится принтер, то должна быть возможность найти именно устройство печати, не зная про него ничего другого.

3. SDP должен позволять просматривать  службы без необходимости знать  специфические характеристики этих служб. Например, если устройство предоставляющее какую-либо услугу может управляться только специальным программным обеспечением по какому-либо очень редкому или закрытому протоколу, то для SPD это не будет проблемой, всё равно можно будет получить информацию о доступности и названии службы.

4. SDP должен предоставлять возможности  для обнаружения новых служб,  которые появились за время работы.

5. SDP должен предоставлять возможность  узнавать, когда служба становится  недоступной из за того, что  клиент вышел за пределы связи,  или по какой-либо другой причине.

6. SDP позволяет службам, классам  служб и атрибутам служб быть  однозначно идентифицированными.

7. SDP должен позволять одному  устройству находить любую службу на любом другом устройстве без обращения к третьему устройству.

8. SDP должен подходить для использования устройствами с ограниченной функциональностью. Помните, мы говорили о холодильниках? А ведь это далеко не предел...

9. SDP должен позволять увеличивать  количество доступной информации о службе. Это означает, что если служба требует подробного и объёмного описания своих возможностей, параметров, ограничений и т. п., то вся эта информация не будет вываливаться на всех, кто просто спросит о доступности службы, а будет предоставлена только тем, кто более пристально заинтересуется именно этой службой.

10. SDP должен поддерживать использование  промежуточных кэширующих агентов для ускорения или повышения эффективности процесса поиска новых служб. Этот пункт не противоречит пункту 7, потому что использование третьего устройства возможно, но не обязательно.

11. SDP должен быть полностью независим  от протоколов более высокого  уровня, используемых Bluetooth соединением.

12. SDP должен работать, когда в  качестве его транспортного протокола  используется L2CAP.

13. SDP должен позволять находить и использовать службы, которые обеспечивают доступ к другим протоколам обнаружения служб. Это позволяет расширять возможности системы, и использовать службы и устройства которые не имеют Bluetooth интерфейса.

14. SDP должен поддерживать создание и определение новых служб без необходимости централизовано регистрироваться.

 

Кроме этого, есть ряд вещей, которые  пока что не входят SDP, но очень возможно, что в следующих редакциях спецификации многие из них станут обязательными.

1. SDP 1.0 не предоставляет механизма доступа с службам, только информацию о службах.

2. SDP 1.0 не предоставляет возможности  оценивать службы. То есть, с его  помощью нельзя автоматически выбрать наиболее подходящую службу, если доступно сразу несколько служб предоставляющий похожий сервис.

3. SDP 1.0 не позволяет договариваться  о параметрах службы.

4. SDP 1.0 не позволяет узнать о  загруженности службы, или устройства  предоставляющего службу.

5. SDP 1.0 не даёт возможности клиенту  управлять службой. 

6. SDP 1.0 не позволяет уведомлять о том, что служба или информация о службе становится недоступной.

7. SDP 1.0 не позволяет уведомлять  о том, что атрибуты службы  изменились.

8. В настоящее время спецификация  не описывает интерфейса, через  который программы должны обращаться к SDP.

9. SDP 1.0 в настоящее время не  обладает развитым механизмом  управления списком служб, например

10. SDP 1.0 не позволяет накапливать  и регистрировать службы.

 

Ещё одним из протоколов, которые  используют L2CAP в качестве транспортного является, как видно из приведённой выше схемы, RFCOMM. Этот протокол эмулирует соединение PPP (point-to-point) по серийному порту (RS-232 или EIATIA-232-E, более известным как COM-порты). Через него работает такие службы как, например, LAN Access. Эта служба может работать как эмуляция Direct cable Connection, когда надо обеспечить связь между всего двумя PC, так и использоваться для полноценного входа в уже существующую локальную сеть. Во втором случае используется устройство под названием LAN Access point, через которое компьютер с Bluetooth оказывается, подключен к LAN так, как он мог бы подключиться через dial-up соединение.

TCS - Telephony Control protocol Specification ещё одна  служба, использующая L2CAP в качестве транспортного протокола. Эта служба может использоваться центральной домашней или офисной телефонной станцией для переадресовки телефонных звонков. При этом TCS используется только для обслуживания соединения. После того как установлено соединение с нужным телефонным аппаратом (или аппаратами), TCS вызывает Bluetooth voice, и сама речь передаётся с использованием этого синхронного протокола.

Bluetooth audio. Обычно для передачи  аудиоинформации используется специальный протокол, который работает непосредственно с baseband protocol, но для этого с успехом может применяться и L2CAP. L2CAP предоставляет меньше возможностей для передачи аудио информации, чем Bluetooth voice, но этот метод незаменим, когда необходимо, к примеру, обмениваться аудиоинформацией между Bluetooth и не Bluetooth сетями. Кроме этого, данный метод хорош, когда требуется дополнительная защита данных. Можно возразить, что при расстояниях, на которых работает Bluetooth, защита аудиоданных не актуальна, но как человек прошедший Советскую Армию телефонистом-секретчиком могу Вас заверить, применение найти можно. Аппарат для шифровки телефонных разговоров в СА средней или малой мощности (среднестатистическое время стойкости - 12 часов, хотя при наличии соответствующей аппаратуры его можно было расколоть и за 14 минут. И это в 89 году, сейчас ещё быстрее имел вес 120 килограмм, и содержал в себе более полу килограмма чистого серебра, около 40 грамм золота и 15 грамм палладия. Брали, как обычно, не качеством, а количеством. Считалось, что если наклепать таких агрегатов достаточно много, то расшифровать зашифрованные с их помощью переговоры будет гораздо дороже (!) чем их зашифровать. Мда. Техника шагнула вперёд, и очень далеко, но, всё-таки, я не сильно удивлюсь, если машины-аппаратные П-244 до сих пор используются в Российской Армии, или где-либо ещё. Bluetooth может обеспечить ещё более надёжную защиту, при большем удобстве и меньшей стоимости.

Информация о работе Технология беспроводной передачи информации на примере технологии Bluetooth