Автор работы: Пользователь скрыл имя, 23 Декабря 2010 в 20:48, реферат
С каждой задачей линейного программирования тесно связана другая линейная задача, называемая двойственной. Первоначальная задача называется исходной.
Исходная задача:
Zmin = 2x1 + x2 + 5x3 при ограничениях
-x1 + x2 + x3 ³ -4,
x1 – 5x2 + x3 ³ 5, xj ³ 0 (j = 1, 2, 3).
2x1 – x2 + 3x3 ³6,
Двойственная задача:
fmin = -4x1 + 5x2 + 6x3 при ограничениях
-y1 + y2 + 2y3 £ 2,
y1 – 5y2 - y3 £ 1, yi ³ 0 (i = 1, 2, 3).
2y1 + y2 + 3y3 £ 5,
Приведем без доказательства следующую теорему. Теорема: если при подстановке компонент оптимального плана в систему ограничений исходной задачи i-e ограничение обращается в неравенство, то i-я компонента оптимального плана двойственной задачи равна нулю.
Если
i-я компонента оптимального плана двойственной
задачи положительна, то i-e ограничение
исходной задачи удовлетворяется ее оптимальным
решением как строгое равенство.
5. Двойственный симплексный метод
В п. 2 и п. 3 было сказано , что для получения решения исходной задачи можно перейти к двойственной и используя оценки ее оптимального плана, определить оптимальное решение исходной задачи.
Переход
к двойственной задаче не обязателен,
так как если рассмотреть первую
симплексную таблицу с
Пусть необходимо решить исходную задачу линейного программирования, поставленную в общем виде: минимизировать функцию Z =СХ при АХ = A0, Х ³ 0. Тогда в двойственной задаче необходимо максимизировать функцию f = YA0 при YA £ С. Допустим, что выбран такой базис D = (A1, А2, ., Аi, ., Аm), при котором хотя бы одна из компонент вектора Х = D-1 A0 = (x1, x2, ., xi, ., xm) отрицательная (например, xi < 0), но для всех векторов Aj выполняется соотношение Zj – Cj £ 0 (i = 1,2, ., n). Тогда на основании теоремы двойственности Y = Сбаз D-1 - план двойственной задачи. Этот план не оптимальный, так как, с одной стороны, при выбранном базисе X содержит отрицательную компоненту и не является планом исходной задачи, а с другой стороны, оценки оптимального плана двойственной задачи должны быть неотрицательными.
Таким образом, вектор Аi, соответствующий компоненте xi < 0, следует исключить из базиса исходной задачи, а вектор, соответствующий отрицательной оценке,— включить в базис двойственной задачи.
Для выбора вектора, включаемого в базис исходной задачи, просматриваем i-ю строку: если в ней не содержатся xij < 0, то линейная функция двойственной задачи не ограничена на многограннике решений, а исходная задача не имеет решений. Если же некоторые xij < 0, то для столбцов, содержащих эти отрицательные значения, вычисляем q0j= min (xi/xij) ³ 0 и определяем вектор, соответствующий max q0j(Zj — Cj) при решении исходной задачи на минимум и min q0j(Zj — Cj) при решении исходной задачи на максимум. Этот вектор и включаем в базис исходной задачи. Вектор, который необходимо исключить из базиса исходной задачи, определяется направляющей строкой.
Если q0j= min (xi/xij) = 0, т. е. xi = 0, то xij берется за разрешающий элемент только в том случае, если xij > 0. Такой выбор разрешающего элемента на данном этапе не приводит к увеличению количества отрицательных компонент вектора X. Процесс продолжаем до получения Х ³ 0; при этом находим оптимальный план двойственной задачи, следовательно, и оптимальный план исходной задачи.
В процессе вычислений по алгоритму двойственного симплексного метода условие Zj – Cj £ 0 можно не учитывать до исключения всех хi < 0, затем оптимальный план находится обычным симплексным методом. Это удобно использовать, если все хi < 0; тогда для перехода к плану исходной, задачи за одну итерацию необходимо q0j определить не по минимуму, а по максимуму отношений, т. е. q0j= max (xi/xij) > 0.
Двойственным
симплексным методом можно
6.
Список используемой
литературы:
1. Солодовников
А.С., Бабайцев В.А., Браилов А.В.
Математика в экономике. «
2. Кузнецов
Ю.Н., Кузубов В.И., Волощенко А.Б.
Математическое
3. http://www.textreferat.com/
Информация о работе Двойственность в линейном программировании