Автор работы: Пользователь скрыл имя, 19 Декабря 2011 в 17:46, курсовая работа
Процесс прогнозирования достаточно актуален в настоящее время. Широка сфера его применения. Прогнозирование широко используется в экономике, а именно в управлении. В менеджменте понятие «планирование» и «прогнозирование» тесно переплетены. Они не идентичны и не подменяют друг друга. Планы и прогнозы различаются между собой временными границами, степенью детализации содержащихся в них показателей, степенью точности и вероятности их достижения, адресностью и, наконец, правовой основой. Прогнозы, как правило, носят индикативный характер, а планы обладают силой директивного характера. Не подмена и противопоставление плана и прогноза, а их правильное сочетание – таков путь планомерного регулирования экономики в условиях рыночной экономики и перехода к ней.
Введение 3
Глава 1 4
1 Задачи и принципы прогнозирования 4
2 Методы научно-технического прогнозирования 7
2.1 Классификация методов прогнозирования 7
2.2 Экстраполяционные методы прогнозирования 10
2.2.1 Предварительная обработка исходной информации в задачах прогнозной экстраполяции 11
2.3 Статистические методы 14
2.4 Экспертные методы 16
2.4.1 Область применения экспертных методов 16
2.4.2 Метод эвристического прогнозирования (МЭП) 19
3 Классификация экономических прогнозов 23
Глава 2 27
4 Методы скользящего среднего и экспоненциального сглаживания 27
Вывод 32
Список литературы 33
Экспертные методы разделяются на два подкласса. Прямые экспертные оценки строятся по принципу получения и обработки независимого обобщенного мнения коллектива экспертов (или одного из них) при отсутствии воздействий на мнение каждого эксперта мнения другого эксперта и мнения коллектива.
Третий
уровень классификации
Класс методов аналогий подразделяется на методы математических и исторических аналогий. Первые в качестве аналога для объекта прогнозирования используют объекты другой физической природы, другой области науки, отрасли техники, однако имеющие математическое описание процесса развития, совпадающее с объектом прогнозирования. Вторые в качестве аналога используют процессы одинаковой физической природы, опережающие во времени развитие объекта прогнозирования.
Опережающие
методы прогнозирования можно
Прямые экспертные оценки по признаку аппарата реализации делятся на виды экспертного опроса и экспертного анализа. В первом случае используются специальные процедуры формирования вопросов, организации получения на них ответов, обработки полученных ответов и формирования окончательного результата. Во втором — основным аппаратом исследования является целенаправленный анализ объекта прогнозирования со стороны эксперта или коллектива экспертов, которые сами ставят и решают вопросы, ведущие к поставленной цели.
Экспертные оценки с обратной связью в своём аппарате имеют три вида методов: экспертный опрос; генерацию идей; игровое моделирование. Первый вид характеризуется процедурами регламентированного неконтактного опроса экспертов перемежающимися обратными связями в рассмотренном выше смысле. Второй — построен на процедурах непосредственного общения экспертов в процессе обмена мнениями по поставленной проблеме. Он характеризуется отсутствием вопросов и ответов и направлен на взаимное стимулирование творческой деятельности экспертов. Третий вид использует аппарат теории игр и ее прикладных разделов. Как правило, реализуется на сочетании динамического взаимодействия коллективов экспертов и вычислительной машины, имитирующих объект прогнозирования в возможных будущих ситуациях.
Последний,
четвертый, уровень классификации подразделяет
виды методов третьего уровня на отдельные
методы и группы методов по некоторым
локальным для каждого вида совокупностям
классификационных признаков, из которых
указать один общий для всего уровня в
целом невозможно.
2.2 Экстраполяционные методы прогнозирования
Методы
экстраполяции тенденций
Регулярная составляющая f(a, х) представляет собой гладкую функцию от аргумента (в большинстве случаев— времени), описываемую конечномерным вектором параметров а, которые сохраняют свои значения на периоде упреждения прогноза. Эта составляющая называется трендом, уровнем, детерминированной основой процесса, тенденцией
Случайная составляющая n(х) обычно считается некоррелированным случайным процессом с нулевым математическим ожиданием. Ее оценки необходимы для дальнейшего определения точностных характеристик.
Экстраполяционные методы прогнозирования основной упор делают на выделение наилучшего тренда и на определение прогнозных значений.
Специфическими
чертами прогнозной экстраполяции
можно назвать методы предварительной
обработки числового ряда с целью преобразования
его к виду, удобному для прогнозирования,
а также анализ логики и физики процесса,
оказывающий существенное влияние па
выбор вида экстраполирующей функции
и на определение границ изменения ее
параметров.
2.2.1 Предварительная обработка исходной информации в задачах прогнозной экстраполяции
Предварительная обработка исходного числового ряда направлена на решение следующих задач: снизить влияние случайной составляющей, т. е. приблизить его к тренду; представить информацию, содержащуюся в числовом ряду, в таком виде, чтобы существенно снизить трудность математического описания тренда. Основными методами решения этих задач являются процедуры сглаживания и выравнивания статистического ряда.
Процедура сглаживания направлена на минимизацию случайных отклонений точек ряда от некоторой гладкой кривой предполагаемого тренда процесса. Наиболее распространен способ осреднения уровня по некоторой совокупности окружающих точек, причем эта операция перемещается вдоль ряда точек, в связи с чем обычно называется скользящая средняя. В самом простом варианте сглаживающая функция линейна и сглаживающая группа состоит из предыдущей и последующей точек, в более сложных — функция нелинейна и использует группу произвольного числа точек.
Сглаживание производится с помощью многочленов, приближающих по методу наименьших квадратов группы опытных точек. Наилучшее сглаживание получается для средних точек группы, поэтому желательно выбирать нечетное количество точек в сглаживаемой группе.
Сглаживание
даже в простом линейном варианте
является во многих случаях весьма
эффективным средством
Линейное сглаживание является достаточно грубой процедурой, выявляющей общий приблизительный вид тренда. Для более точного определения формы сглаженной кривой может применяться операция нелинейного сглаживания или взвешенные скользящие средние. В этом случае ординатам точек, входящих в скользящую группу, приписываются различные веса в зависимости от их расстояния от середины интервала сглаживания.
Если сглаживание направлено на первичную обработку числового ряда для исключения случайных колебаний и выявления тренда, то выравнивание служит целям более удобного представления исходного ряда, оставляя прежними его значения.
Наиболее общими приемами выравнивания являются логарифмирование и замена переменных.
В случае если эмпирическая формула предполагается содержащей три параметра либо известно, что функция трехпараметрическая, иногда удается путем некоторых преобразований исключить один из параметров, а оставшиеся два привести к одной из формул выравнивания.
Можно рассматривать выравнивание не только как метод представления исходных данных, но и как метод непосредственного приближенного определения параметров функции, аппроксимирующей исходный числовой ряд. Зачастую именно так и используется этот метод в некоторых экстраполяционных прогнозах. Отметим, что возможность непосредственного его использования для определения параметров аппроксимирующей функции определяется главным образом видом исходного числового ряда и степенью наших знаний, нашей уверенности относительно вида функции, описывающей исследуемый процесс.
В том случае, если вид функции нам неизвестен, выравнивание следует рассматривать как предварительную процедуру, в процессе которой путем применения различных формул и приемов выясняется наиболее подходящий вид функции, описывающей эмпирический ряд.
Одной из разновидностей метода выравнивания является исследование эмпирического ряда с целью выяснения некоторых свойств функции, описывающей его. При этом не обязательно преобразования приводят к линейным формам. Однако результаты их подготавливают и облегчают процесс выбора аппроксимирующей функции в задачах прогностической экстраполяции. В простейшем случае предлагается использовать следующие три типа дифференциальных функций роста:
1)
Первая производная, или
2)
Относительный
3)
Эластичность функции
2.3 Статистические методы
Прежде чем приступить к анализу статистических методов прогнозирования, рассмотрим некоторые общие понятия и определения, относящиеся к корреляционным и регрессионным моделям. Две случайные величины являются корреляционно связанными, если математическое ожидание одной из них меняется в зависимости от изменения другой.
Применение корреляционного анализа предполагает выполнение следующих предпосылок:
а) Случайные величины y(y1, у2, ..., Уn) и x(x1, x2, ..., Хn) могут рассматриваться как выборка из двумерной генеральной совокупности с нормальным законом распределения.
б) Ожидаемая величина погрешности и равна нулю
в) Отдельные наблюдения стахостически независимы, т. е. значение данного наблюдения не должно зависеть от значения предыдущего и последующего наблюдений.
г) Ковариация между ошибкой, связанной с одним значением зависимой переменной у, и ошибкой, связанной с любым другим значением y , равна нулю.
д) Дисперсия ошибки, связанная с одним значением у, равна дисперсии ошибки, связанной с любым другим значением .
е) Ковариация между погрешностью и каждой из независимых переменных равна нулю.
ж) Непосредственная применимость этого метода ограничивается случаями, когда уравнение кривой является линейным относительно своих параметров bo, bi, ...,bk Это, однако, не означает, что само уравнение кривой относительно переменных должно быть линейным. Если эмпирические уравнения наблюдений не являются линейными, то во многих случаях оказывается возможным привести их к линейной форме и уже. после этого применять метод наименьших квадратов.
з) Наблюдения независимых переменных производятся без погрешности.
Перед началом корреляционного анализа необходимо проверить выполнение этих предпосылок.
Связь между случайной и неслучайной величинами называется регрессионной, а метод анализа таких связей — регрессионным анализом. Применение регрессионного анализа предполагает обязательное выполнение предпосылок корреляционного анализа. Только при выполнении приведенных предпосылок оценки коэффициентов корреляции и регрессии, получаемые с помощью способа наименьших квадратов, будут несмещенными и иметь минимальную дисперсию.
Регрессионный анализ тесно связан с корреляционным. При выполнении предпосылок корреляционного анализа выполняются предпосылки регрессионного анализа. В то же время регрессионный анализ предъявляет менее жесткие требования к исходной информации.» Так, например, проведение регрессионного анализа возможно даже в случае отличия распределения случайной величины от нормального, как это часто бывает для технико-экономических величин. В качестве зависимой переменной в регрессионном анализе используется случайная переменная, а в качестве независимой — неслучайная переменная.
По
степени комплексности