Автор работы: Пользователь скрыл имя, 21 Марта 2012 в 23:16, курсовая работа
Производственная функция занимает важное место в экономической теории как модель, непосредственно относящаяся не к процессу обмена, а к процессу производства, который связан с потреблением различных ресурсов (сырье, энергия, труд, оборудование и т.д.).
ВВЕДЕНИЕ………………………………………………………………………………….3
Понятие производственной функции……………………………………………………5
Понятие производственной функции………………………………………………….5
Виды производственных функций……………………………………………...8
Линейная производственная функция………………………………………….9
Квадратичная производственная функция……………………………………..9
2.1.4. Производственная функция Кобба-Дугласа…………………………………….10
Построение производственной функции………………………………………………12
Исходные данные для построения ПФ………………………………………………12
Построение производственной функции……………………………………..13
Линейная производственная функция……………………………………13
Квадратичная производственная функция……………………………….15
Производственная функция Кобба-Дугласа……………………………..17
3.1.1.3.1. Производственная функция Кобба-Дугласа при ………..17
3.1.1.3.2. Производственная функция Кобба-Дугласа с учетом НТП при ………………………………………………………………..19
3.1.1.3.3. Производственная функция Кобба-Дугласа с учетом НТП при ………………………………………………………………..21
3.1.1.3.4. Производственная функция Кобба-Дугласа при ……….23
3.1.1.4. Выбор лучшей модели…………………………………………………26
3.1.1.5. Расчет экономических характеристик выбранной производственной функции………………………………………………………………………….27
ЗАКЛЮЧЕНИЕ………………………………………………………………………….30
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ………………………………….31
Министерство образования и науки РФ
Федеральное агентство по образованию РФ
Московский
государственный университет
статистики и информатики (МЭСИ)
Кафедра Прикладной математики
Курсовая работа
по дисциплине «Теория риска и моделирование
рисковых ситуаций»
на тему:
«Построение и анализ производственной функции ВВП Японии»
Руководитель: доцент кафедры прикладной математики, кандидат экономических наук
Романников А.Н.
Выполнил: студент
Щербинов А.А.
ДЭК-301.
Содержание
2.1.4. Производственная функция Кобба-Дугласа…………………………………….10
3.1.1.3.1. Производственная функция Кобба-Дугласа при ………..17
3.1.1.3.2. Производственная функция Кобба-Дугласа с учетом НТП при ………………………………………………………………..19
3.1.1.3.3.
Производственная функция
3.1.1.3.4. Производственная функция Кобба-Дугласа при ……….23
3.1.1.4. Выбор лучшей модели…………………………………………………26
3.1.1.5.
Расчет экономических
ВВЕДЕНИЕ
Производственная функция занимает важное место в экономической теории как модель, непосредственно относящаяся не к процессу обмена, а к процессу производства, который связан с потреблением различных ресурсов (сырье, энергия, труд, оборудование и т.д.).
Построение
производственных функции, то есть выявление
фактических технологических
Исследование производственной функции применяется в различных областях знаний и для широкого типа данных. Функции могут относиться к технологическим процессам в промышленности или сельском хозяйстве. При работе с производственной функцией возникают различные проблемы: выбор надлежащих объясняющих переменных, подготовка соответствующих данных, выбор математической функции, статистическая оценка, интерпретация результатов. Рассмотрение двух факторов производства обосновано при анализе промышленного производства, как предприятия, отрасли, так и национального, мирового хозяйств.
Валовой внутренний продукт является обобщающим экономическим показателем, который выражает в рыночных ценах совокупную стоимость товаров и услуг, созданных внутри страны, и только с использованием факторов производства данной страны в течение данного времени.
Валовой внутренний продукт — один из важнейших макроэкономических показателей , характеризующий конечный результат производственной деятельности экономических единиц — резидентов и широко используемый в макроэкономическом анализе и международных сопоставлениях.
Отметим, во-первых, что ВВП измеряет рыночную стоимость производства за определенный период. Во-вторых, ВВП -- это стоимость произведенных конечных товаров и услуг, поэтому стоимость промежуточных товаров и услуг не входит в ВВП (потому что в стоимость конечных продуктов уже входят все имевшие место промежуточные сделки), ибо в противном случае показатель содержал бы повторный счет. Конечными товарами и услугами являются те из них, которые приобретаются в течение данного времени для конечного потребления и не используется в целях промежуточного потребления, перепродажи и т.д.
Япония — развитая страна с очень высоким уровнем жизни (десятое место по индексу развития человеческого потенциала). В Японии одна из самых высоких ожидаемых продолжительностей жизни, в 2009 году она составляла 82,12 лет, и один из самых низких уровней младенческой смертности. Являясь великой экономической державой, Япония занимает третье место в мире по номинальному ВВП и третье по ВВП, рассчитанному по паритету покупательной способности. Япония является четвёртым по величине экспортёром и шестым по величине импортёром. Именно поэтому, в данной курсовой работе я решил разработать модель производственной функции её ВВП.
Для исследования были использованы данные по ВВП Японии за 30 лет (1980 – 2009) относительно рабочей силы (L) и капитала (K).
Понятие производственной функции
Производственная функция – это функция, независимая переменная которой принимает значения объёмов затрачиваемого или используемого ресурса (фактора производства), а зависимая переменная – значения объёмов выпускаемой продукции.
В формуле (1) и - числовые величины, т. е. есть функция одной переменной . В связи с этим ПФ называется одно-ресурсной или однофакторной ПФ, её область определения – множество неотрицательных действительных чисел (т. е. ). Запись означает, что если ресурс затрачивается или используется в количестве единиц, то продукция выпускается в количестве единиц. Символ - знак функции – является характеристикой производственной системы, преобразующей ресурс в выпуск. Символ связывает между собой независимую переменную с зависимой переменной . В макроэкономической теории принято считать, что - это максимально возможный объём выпуска продукции, если ресурс затрачивается или используется в количестве единиц. В макроэкономике такое понимание не совсем корректно: возможно, при другом распределении ресурсов между структурными единицами экономики выпуск мог бы быть и большим. В этом случае ПФ – это статистически устойчивая связь между затратами ресурса и выпуском. Более правильной является символика , где - вектор параметров ПФ.
ПФ могут
иметь различные области
ПФ может быть использована для описания взаимосвязи между годовыми затратами труда в масштабе региона или страны в целом и годовым конечным выпуском продукции (или доходом) этого региона или страны в целом. Здесь в роли производственной системы выступает регион или страна в целом (точнее хозяйственная система региона или страны) – имеем макроэкономический уровень и макроэкономическую ПФ (МАПФ). МАПФ строятся и активно используются для решения всех трёх типов задач (анализа, планирования и прогнозирования).
Точное толкование понятий затрачиваемого (или используемого) ресурса и выпускаемой продукции, а также выбор единиц их измерения зависят от характера и масштаба производственной системы, особенностей решаемых (с помощью ПФ) задач (аналитических, плановых, прогнозных), наличия исходных данных. На микроэкономическом уровне затраты и выпуск могут измеряться как в натуральных, так и в стоимостных единицах (показателях). Годовые затраты труда могут быть измерены в человеко-часах (объём человеко-часов – натуральный показатель) или в рублях выплаченной заработной платы (её величина – стоимостной показатель). Выпуск продукции может быть представлен в штуках или в других натуральных единицах (тоннах, метрах и т. п.) или в виде своей стоимости.
На макроэкономическом уровне затраты и выпуск измеряются, как правило, в стоимостных показателях и представляют собой стоимостные (ценностные) агрегаты, т. е. суммарные величины произведений объёмов затрачиваемых (или используемых) ресурсов и выпускаемых продуктов на их цены.
Производственная функция (ПФ) – это модель, которая выражает технологическую зависимость между результатами деятельности технического объекта и затратами факторов производства. Входными параметрами являются ресурсы R1, ..., Rn, а выходными - результат в виде годовых объемов производства различных видов продукции Y1, ..., Ym .
В качестве ресурсов (факторов производства) наиболее часто рассматриваются величины затрат живого труда, предметов и средств труда, используемых в процессе производства: накопленный труд в форме производственных фондов (капитал) К и настоящий (живой) труд. В качестве результата рассматривается валовой выпуск (либо валовой внутренний продукт, либо национальный доход).
Простейшей моделью производственной функции является:
Y – выход;
K – капитал;
L – трудовые ресурсы.
Таким образом, экономика замещается своей моделью в форме ПФ
Y= F(K, L),
т.е. выпуск (продукции) есть функция от затрат ресурсов (капитала и труда).
Если модель учитывает время t затрат на производство, то производственная функция записывается в виде:
Y = F(K, L, t)
Производственная функция должна
удовлетворять следующим
1) F(K, L) – непрерывная дважды дифференцируемая функция в области K>0;
2) ,
3) ,
Темпы прироста часто убывают при увеличении какого-либо фактора, особенно, если производство ведется по какой-либо неизменной технологии. Убывание темпов роста при увеличении масштабов производства часто связано с вынужденным использованием более дорогих или менее качественных ресурсов. При этом при достижении определенного уровня инвестиций в производство какого-нибудь отдельного фактора рост производства прекращается полностью, несмотря на увеличение рассматриваемого фактора.
4) F(lK, lL) = lF(K, L)
- гипотеза однородности
5) F(0, L) = F(K, 0) = 0
- при отсутствии
одного из ресурсов
6) для F(K, L, t)
Рассмотрим 4 производственные функции:
1. Линейная модель (функция с взаимозамещением ресурсов), задается уравнением:
Y = a0 + b1K + c1L , где b1, c1 >0 – частные эффективности ресурсов (предельный физический продукт затрат)
2. Квадратичная модель, задается уравнением:
Y = a0 + b1K + c1L + b2K2 + c2L2
3. Модель Кобба-Дугласа, задается уравнением:
Y = AKaLb, где А — коэффициент нейтрального технического прогресса; а1, a2 -коэффициенты эластичности по труду и капиталу.
4. Модель с учетом НТП, задается уравнением:
Y = AKaLber0t, где - специальный множитель технического процесса, r0 – параметр нейтрального НТП (r0 >0)
Параметры функции могут быть определены по методу наименьших квадратов
1. Для линейной модели:
Функция невязок:
G = = ® min по а0, b1, c1
Производные по коэффициентам:
, где i = 1…n
приравниваем нулю
Информация о работе Построение и анализ производственной функции ВВП Японии